论文标题

线性$ q $ - 差异,差异和差异操作员保留一些$ \ MATHCAL {a} $ - 整个功能

Linear $q$-difference, difference and differential operators preserving some $\mathcal{A}$-entire functions

论文作者

Huang, Jiaxing, Ng, Tuen Wai

论文摘要

我们应用Rossi的Borel定理的半平面版本来研究$ \ Mathcal {a} $的线性组合的零分布 - 整个函数(定理1.2)。这提供了一种研究线性$ q $ - 差异,差异和差分运算符(具有整个系数)的统一方法,该子集保留了$ \ Mathcal {a} $的子集 - 整个功能,因此为Hermite-Poulain Theorem to Linear to for Linate to Linate to Linate for Linate($ Q $ - Q $ - )差异操作员获得了几个类似的结果。该方法还会产生一个结果,即在$ \ Mathcal {a} $ - 整个函数的某些子类中的某些差分多项式的无限多个非现实零。

We apply Rossi's half-plane version of Borel's Theorem to study the zero distribution of linear combinations of $\mathcal{A}$-entire functions (Theorem 1.2). This provides a unified way to study linear $q$-difference, difference and differential operators (with entire coefficients) preserving subsets of $\mathcal{A}$-entire functions, and hence obtain several analogous results for the Hermite-Poulain Theorem to linear finite ($q$-)difference operators with polynomial coefficients. The method also produces a result on the existence of infinitely many non-real zeros of some differential polynomials of functions in certain sub-classes of $\mathcal{A}$-entire functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源