论文标题
使用EHR数据扩展用于生存分析的神经添加剂模型
Extending the Neural Additive Model for Survival Analysis with EHR Data
论文作者
论文摘要
随着对应用机器学习来开发医疗保健解决方案的兴趣,人们希望创建可解释的深度学习模型来生存分析。在本文中,我们通过合并成对特征相互作用网络并为这些模型配备损失函数来扩展神经添加剂模型(NAM),这些损失函数既适合COX模型的比例和非比例扩展。我们表明,在这个扩展的框架中,我们可以构建称为tomenam的非比例危害模型,该模型可显着提高基准生存数据集上标准NAM模型体系结构的性能。我们将这些模型体系结构应用于首尔国立大学医院甘南中心(SNUHGC)电子健康记录(EHR)数据库的数据,以建立一个可解释的胃癌预测神经网络生存模型。我们证明,在基准生存分析数据集以及我们的胃癌数据集中,我们的模型体系结构产生的性能与当前最新的黑盒方法相匹配或超过了。
With increasing interest in applying machine learning to develop healthcare solutions, there is a desire to create interpretable deep learning models for survival analysis. In this paper, we extend the Neural Additive Model (NAM) by incorporating pairwise feature interaction networks and equip these models with loss functions that fit both proportional and non-proportional extensions of the Cox model. We show that within this extended framework, we can construct non-proportional hazard models, which we call TimeNAM, that significantly improve performance over the standard NAM model architecture on benchmark survival datasets. We apply these model architectures to data from the Electronic Health Record (EHR) database of Seoul National University Hospital Gangnam Center (SNUHGC) to build an interpretable neural network survival model for gastric cancer prediction. We demonstrate that on both benchmark survival analysis datasets, as well as on our gastric cancer dataset, our model architectures yield performance that matches, or surpasses, the current state-of-the-art black-box methods.