论文标题

贝叶斯图神经网络的光度计目录的镜头收敛的分层推断

Hierarchical Inference of the Lensing Convergence from Photometric Catalogs with Bayesian Graph Neural Networks

论文作者

Park, Ji Won, Birrer, Simon, Ueland, Madison, Cranmer, Miles, Agnello, Adriano, Wagner-Carena, Sebastian, Marshall, Philip J., Roodman, Aaron, Collaboration, the LSST Dark Energy Science

论文摘要

我们提出了一个贝叶斯图神经网络(BGNN),该神经网络可以从给定的视线沿星系的光度测量值估算弱透镜收敛($κ$)。该方法在强力延迟宇宙学(TDC)中特别感兴趣,其中表征“外部收敛”($κ_ {\ rm ext} $),从镜头环境中进行,而视线对于精确推理了哈勃常数的精确推理($ h_0 $)。从$ \ sim $ 1 $'$的$κ$分辨率的大规模模拟开始,我们引入了$ \ sim $ 1 $''$的Galaxy-Galaxy镜头量表上的波动,并提取随机视线来训练我们的BGNN。然后,我们以与训练分布重叠不同程度的测试集评估模型。对于每个1,000个视线的测试集,BGNN渗透了单个$κ$后代,我们将其结合在层次的贝叶斯模型中,以在管理人口的超参数上产生限制。对于通过培训组进行了很好的测试场,BGNN恢复了$κ$的人口平均值,而没有偏见,从而贡献了$ H_0 $错误预算在1 \%以下。在带有稀疏样品的训练集的尾部中,与基于匹配的星系数计数的传统方法的简化版本相比,BGNN可以摄取有关每个视线的所有可用信息,它提取了更多的$κ$信号,该版本受样本差异的限制。我们使用BGNN的分层推理管道有望改善精密TDC的$κ{\ rm ext} $表征。我们的管道的实现可作为公共Python软件包,即“欢乐节点”。

We present a Bayesian graph neural network (BGNN) that can estimate the weak lensing convergence ($κ$) from photometric measurements of galaxies along a given line of sight. The method is of particular interest in strong gravitational time delay cosmography (TDC), where characterizing the "external convergence" ($κ_{\rm ext}$) from the lens environment and line of sight is necessary for precise inference of the Hubble constant ($H_0$). Starting from a large-scale simulation with a $κ$ resolution of $\sim$1$'$, we introduce fluctuations on galaxy-galaxy lensing scales of $\sim$1$''$ and extract random sightlines to train our BGNN. We then evaluate the model on test sets with varying degrees of overlap with the training distribution. For each test set of 1,000 sightlines, the BGNN infers the individual $κ$ posteriors, which we combine in a hierarchical Bayesian model to yield constraints on the hyperparameters governing the population. For a test field well sampled by the training set, the BGNN recovers the population mean of $κ$ precisely and without bias, resulting in a contribution to the $H_0$ error budget well under 1\%. In the tails of the training set with sparse samples, the BGNN, which can ingest all available information about each sightline, extracts more $κ$ signal compared to a simplified version of the traditional method based on matching galaxy number counts, which is limited by sample variance. Our hierarchical inference pipeline using BGNNs promises to improve the $κ_{\rm ext}$ characterization for precision TDC. The implementation of our pipeline is available as a public Python package, Node to Joy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源