论文标题
关于无监督的不确定性驱动语音伪标签过滤和模型校准
On Unsupervised Uncertainty-Driven Speech Pseudo-Label Filtering and Model Calibration
论文作者
论文摘要
伪标签(PL)过滤构成了自我训练(ST)方法的关键部分,用于无监督域的适应性。基于辍学的不确定性驱动的自我训练(DUST)首先训练一个源域标记的数据的教师模型进行。然后,教师模型用于为未标记的目标域数据提供PLS。最后,我们培训一名学生的增强标记和伪标记的数据。这个过程是迭代的,学生成为下一次尘埃迭代的老师。在每个尘埃迭代中的学生模型训练之前,一个至关重要的步骤正在滤除可能导致学生模型误入歧途的嘈杂PL。在《灰尘》中,我们提出了一种简单,有效和理论上的声音过滤策略,该策略基于教师模型对其对未标记的语音话语的预测的不确定性。我们通过计算从教师模型中从教师模型中绘制的多个样本之间的分歧来估计模型的不确定性,这是通过辍学来指定噪声的。在这项工作中,我们表明,在最初使用的情况下,灰尘的PL过滤可能在严重的源和目标域不匹配下失败。我们建议采用几种消除或减轻此问题的方法。此外,我们带来了从神经网络模型校准的研究到灰尘的见解,并表明良好的模型与灰尘PL滤波步骤的积极结果密切相关。
Pseudo-label (PL) filtering forms a crucial part of Self-Training (ST) methods for unsupervised domain adaptation. Dropout-based Uncertainty-driven Self-Training (DUST) proceeds by first training a teacher model on source domain labeled data. Then, the teacher model is used to provide PLs for the unlabeled target domain data. Finally, we train a student on augmented labeled and pseudo-labeled data. The process is iterative, where the student becomes the teacher for the next DUST iteration. A crucial step that precedes the student model training in each DUST iteration is filtering out noisy PLs that could lead the student model astray. In DUST, we proposed a simple, effective, and theoretically sound PL filtering strategy based on the teacher model's uncertainty about its predictions on unlabeled speech utterances. We estimate the model's uncertainty by computing disagreement amongst multiple samples drawn from the teacher model during inference by injecting noise via dropout. In this work, we show that DUST's PL filtering, as initially used, may fail under severe source and target domain mismatch. We suggest several approaches to eliminate or alleviate this issue. Further, we bring insights from the research in neural network model calibration to DUST and show that a well-calibrated model correlates strongly with a positive outcome of the DUST PL filtering step.