论文标题
库仑分支物理学的Argyres-Douglas化身
Argyres-Douglas Avatars of Coulomb Branch Physics
论文作者
论文摘要
我们研究了最简单相互作用的4D $ \ MATHCAL {N} = 2 $ SUPERCON-FORM-FORM-FORMANTOR FIELD理论:最小的Argyres-Douglas(MAD)理论的最简单相互作用的4D $ \ MATHCAL {N} = 2 $的库仑分支上的深红色物理(IR)物理学的化身。库仑分支最基本的特性之一是出现的无限尺寸高旋转对称性。尽管疯狂的理论正在相互作用,因此没有这种对称性,但我们发现在库仑分支上编码出现的复合物高旋转对称性的UV操作员。此外,我们表明这些UV操作员的表亲会产生IR高旋转多重的表亲。就超符号表示理论而言,我们被导致了$ \ bar {\ Mathcal {c}} _ {r,r(j,j,j,j)} $倍数的确切频谱的猜想受保护的光谱。一路上,我们对这些运算符进行几何解释,并将它们包含在库仑分支的扩展中 / $ \ MATHCAL {n} = 2 $手性运算符通讯。
We study ultraviolet (UV) incarnations of deep infrared (IR) physics on the Coulomb branch of the simplest interacting 4D $\mathcal{N}=2$ superconformal field theory: the minimal Argyres-Douglas (MAD) theory. One of the most basic properties of the Coulomb branch is an emergent infinite-dimensional higher-spin symmetry. While the MAD theory is interacting and therefore does not have such a symmetry, we find UV operators that encode the emergent complex higher-spin symmetry on the Coulomb branch. Moreover, we show that cousins of these UV operators give rise to cousins of the IR higher-spin multiplets. In terms of superconformal representation theory, we are led to a conjecture on the exact spectrum of $\bar{\mathcal{C}}_{R,r(j,\bar j)}$ multiplets in the MAD theory for all $R$, $r$, $j$, and $\bar j$ satisfying $R+\bar j -j+1=0$, thereby making progress towards a full characterization of the protected spectrum. Along the way, we give a geometrical interpretation of these operators and include them in an extension of the Coulomb branch / $\mathcal{N}=2$ chiral operator correspondence.