论文标题

朝向erdős-gallai循环分解猜想

Towards the Erdős-Gallai Cycle Decomposition Conjecture

论文作者

Bucić, Matija, Montgomery, Richard

论文摘要

在1960年代,埃尔德(Erd)和加莱(Gallai)猜想,任何$ n $ vertex图的边缘都可以分解为$ o(n)$循环和边缘。 We improve upon the previous best bound of $O(n\log\log n)$ cycles and edges due to Conlon, Fox and Sudakov, by showing an $n$-vertex graph can always be decomposed into $O(n\log^{*}n)$ cycles and edges, where $\log^{*}n$ is the iterated logarithm function.

In the 1960's, Erdős and Gallai conjectured that the edges of any $n$-vertex graph can be decomposed into $O(n)$ cycles and edges. We improve upon the previous best bound of $O(n\log\log n)$ cycles and edges due to Conlon, Fox and Sudakov, by showing an $n$-vertex graph can always be decomposed into $O(n\log^{*}n)$ cycles and edges, where $\log^{*}n$ is the iterated logarithm function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源