论文标题
全息图的最大纠缠率
Maximal Entangling Rates from Holography
论文作者
论文摘要
我们证明了对纠缠,相等相关因子的生长以及与全息双重偶联的CFT中的空间均匀时变状态的新速度限制。这些边界也可以看作是量子弱的能量条件。几个速度限制对于任意大小和多个连接组件的区域有效,我们的发现暗示了小子区域的有效纠缠速度的新界限。在2D CFT中,我们的结果证明了Liu和Suh的猜想。我们还结合了纠缠和相关因子的空间衍生物。我们发现的关键是动量范围对应关系,表明纠缠生长是通过越过HRT表面的动量计算的。在我们的设置中,我们证明了边界锚定的极端表面的许多一般特征,例如在表面可以探测的最小半径上的尖锐结合,并且极端表面的尖端不能位于被困的区域。我们的方法依赖于新颖的全球GR技术,包括洛伦兹和里曼尼亚鹰群之间的微妙相互作用。虽然我们的证据假设批量的主要能量条件,但我们提供了数值证据,表明我们的界限在限制性较小的假设下是真实的。
We prove novel speed limits on the growth of entanglement, equal-time correlators, and spacelike Wilson loops in spatially uniform time-evolving states in strongly coupled CFTs with holographic duals. These bounds can also be viewed as quantum weak energy conditions. Several of the speed limits are valid for regions of arbitrary size and with multiple connected components, and our findings imply new bounds on the effective entanglement velocity of small subregions. In 2d CFT, our results prove a conjecture by Liu and Suh for a large class of states. We also bound spatial derivatives of entanglement and correlators. Key to our findings is a momentum-entanglement correspondence, showing that entanglement growth is computed by the momentum crossing the HRT surface. In our setup, we prove a number of general features of boundary-anchored extremal surfaces, such as a sharp bound on the smallest radius that a surface can probe, and that the tips of extremal surfaces cannot lie in trapped regions. Our methods rely on novel global GR techniques, including a delicate interplay between Lorentzian and Riemannian Hawking masses. While our proofs assume the dominant energy condition in the bulk, we provide numerical evidence that our bounds are true under less restrictive assumptions.