论文标题
主题 - 培养基改进了鸡尾酒会效应的尖峰神经网络和麦格克效应
Motif-topology improved Spiking Neural Network for the Cocktail Party Effect and McGurk Effect
论文作者
论文摘要
网络体系结构和学习原理在形成人工神经网络(ANN)和尖峰神经网络(SNN)中的复杂功能方面发挥着关键。 SNN被视为新一代人造网络,通过合并比ANN更多的生物学特征,包括动态尖峰神经元,功能指定的体系结构和有效的学习范式。网络体系结构还被认为体现了网络的功能。在这里,我们提出了一个基序的改进的SNN(M-SNN),以进行有效的多感觉整合和认知现象模拟。我们模拟的认知现象模拟包括鸡尾酒会效应和麦格克效应,许多研究人员都对此进行了讨论。我们的M-SNN由称为网络图案的元操作员组成。从空间或时间数据集预先学习的人造拓扑的三节点网络拓扑的来源。在单感官分类任务中,结果显示使用网络基拓拓扑的M-SNN的准确性高于纯馈电网络拓扑,而无需使用它们。在多感觉集成任务中,使用人工网络图案的M-SNN的性能优于使用BRP(生物学上可见的奖励传播)的最先进的SNN。此外,M-SNN可以更好地模拟鸡尾酒会效应和麦克古克效应,并以较低的计算成本进行效果。我们认为,人工网络图案可以被视为一些先验知识,这些知识将有助于SNN的多感觉整合,并为模拟认知现象提供了更多好处。
Network architectures and learning principles are playing key in forming complex functions in artificial neural networks (ANNs) and spiking neural networks (SNNs). SNNs are considered the new-generation artificial networks by incorporating more biological features than ANNs, including dynamic spiking neurons, functionally specified architectures, and efficient learning paradigms. Network architectures are also considered embodying the function of the network. Here, we propose a Motif-topology improved SNN (M-SNN) for the efficient multi-sensory integration and cognitive phenomenon simulations. The cognitive phenomenon simulation we simulated includes the cocktail party effect and McGurk effect, which are discussed by many researchers. Our M-SNN constituted by the meta operator called network motifs. The source of 3-node network motifs topology from artificial one pre-learned from the spatial or temporal dataset. In the single-sensory classification task, the results showed the accuracy of M-SNN using network motif topologies was higher than the pure feedforward network topology without using them. In the multi-sensory integration task, the performance of M-SNN using artificial network motif was better than the state-of-the-art SNN using BRP (biologically-plausible reward propagation). Furthermore, the M-SNN could better simulate the cocktail party effect and McGurk effect with lower computational cost. We think the artificial network motifs could be considered as some prior knowledge that would contribute to the multi-sensory integration of SNNs and provide more benefits for simulating the cognitive phenomenon.