论文标题
可学习的时空图嵌入,用于深度惯性定位
Learnable Spatio-Temporal Map Embeddings for Deep Inertial Localization
论文作者
论文摘要
室内定位系统通常通过手动定义的方法与MAP信息融合,以减少探射量漂移,但是这种方法对噪声和努力敏感,以跨探针源概括。为了解决MAP利用率中的鲁棒性问题,我们通过组合学习的空间地图嵌入和时间探测器嵌入来在地图中可能在MAP中可能的数据驱动。我们的先前学会比以前的手工定义方法更准确地编码了哪些地图区域是可行的位置。当在粒子过滤器中使用时,这一先验导致仅惯性定位精度提高了49%。该结果很重要,因为它表明我们的相对定位方法可以使用蓝牙信标的绝对定位的性能。为了显示我们方法的普遍性,我们还使用车轮编码器探光仪显示出类似的改进。
Indoor localization systems often fuse inertial odometry with map information via hand-defined methods to reduce odometry drift, but such methods are sensitive to noise and struggle to generalize across odometry sources. To address the robustness problem in map utilization, we propose a data-driven prior on possible user locations in a map by combining learned spatial map embeddings and temporal odometry embeddings. Our prior learns to encode which map regions are feasible locations for a user more accurately than previous hand-defined methods. This prior leads to a 49% improvement in inertial-only localization accuracy when used in a particle filter. This result is significant, as it shows that our relative positioning method can match the performance of absolute positioning using bluetooth beacons. To show the generalizability of our method, we also show similar improvements using wheel encoder odometry.