论文标题

对组织病理学图像分析的染色不变自我监督学习

Stain-invariant self supervised learning for histopathology image analysis

论文作者

Tiard, Alexandre, Wong, Alex, Ho, David Joon, Wu, Yangchao, Nof, Eliram, Goh, Alvin C., Soatto, Stefano, Nadeem, Saad

论文摘要

我们为苏木精和曙红(H&E)染色的乳腺癌染色图像中的几种分类任务提出了一种自制算法。我们的方法是强大的,可以弄脏组织学图像采集过程固有的变化,该过程限制了自动分析工具的适用性。我们通过施加限制的潜在空间来解决这个问题,该空间在训练过程中利用染色标准化技术。在每次迭代中,我们都会选择一个图像作为归一化目标,并生成标准化为该目标的批处理中每个图像的版本。我们最大程度地减少了在不同染色变化下与同一图像相对应的嵌入之间的距离,同时最大化其他样品之间的距离。我们表明,我们的方法不仅可以提高多中心数据之间对染色变化的鲁棒性,而且还可以通过对各种归一化目标和方法进行广泛的实验进行分类。我们的方法在几个公开可用的乳腺癌数据集上实现了最先进的性能,从肿瘤分类(Camelyon17)和亚型(BRACS)到HER2状态分类和治疗反应预测。

We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin (H&E) stained images of breast cancer. Our method is robust to stain variations inherent to the histology images acquisition process, which has limited the applicability of automated analysis tools. We address this problem by imposing constraints a learnt latent space which leverages stain normalization techniques during training. At every iteration, we select an image as a normalization target and generate a version of every image in the batch normalized to that target. We minimize the distance between the embeddings that correspond to the same image under different staining variations while maximizing the distance between other samples. We show that our method not only improves robustness to stain variations across multi-center data, but also classification performance through extensive experiments on various normalization targets and methods. Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets ranging from tumor classification (CAMELYON17) and subtyping (BRACS) to HER2 status classification and treatment response prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源