论文标题
关于组合本地搜索的平滑复杂性
On the Smoothed Complexity of Combinatorial Local Search
论文作者
论文摘要
我们提出了一个统一的框架,用于平滑组合局部优化问题,并展示如何在此模型中施放复杂性类别中各种问题的选择。这种抽象使我们能够识别确定局部搜索动力学平滑运行时间的关键结构属性和相应的参数。我们通过黑框工具对此进行正式化,该黑框工具可在所需的预期最大步骤上提供具体的界限,直到本地搜索达到精确的本地最佳最佳。从某种意义上说,这种界限特别强,因为它适用于任何启动可行解决方案,任何选择的旋转规则,并且不依赖于在输入上应用的特定噪声分布的选择,但它仅通过概率密度的全局上限$ ϕ $进行参数化。该工具的功能可以通过将其实例化,以获取有效的平滑运行时间(作为$ ϕ $和输入大小)的各种PLS问题。 最值得注意的是,我们专注于在拥堵游戏中找到纯净的纳什均衡的重要当地优化问题,这是从平滑分析的角度来看。具体而言,我们在各种表示情况下为一般和网络拥塞游戏提出了新颖的平滑分析模型,包括显式,步骤功能和多项式资源潜伏期。我们研究了这些问题的PLS实例,并表明其标准的本地搜索算法在多项式平滑的时间内运行。 最后,我们将框架的进一步应用介绍给各种其他组合问题,包括在加权图中的本地最大切割,旅行推销员问题(TSP)$ k $ -opt本地启发式启发式,以及在网络协调游戏中找到纯粹的平衡。
We propose a unifying framework for smoothed analysis of combinatorial local optimization problems, and show how a diverse selection of problems within the complexity class PLS can be cast within this model. This abstraction allows us to identify key structural properties, and corresponding parameters, that determine the smoothed running time of local search dynamics. We formalize this via a black-box tool that provides concrete bounds on the expected maximum number of steps needed until local search reaches an exact local optimum. This bound is particularly strong, in the sense that it holds for any starting feasible solution, any choice of pivoting rule, and does not rely on the choice of specific noise distributions that are applied on the input, but it is parameterized by just a global upper bound $ϕ$ on the probability density. The power of this tool can be demonstrated by instantiating it for various PLS-hard problems of interest to derive efficient smoothed running times (as a function of $ϕ$ and the input size). Most notably, we focus on the important local optimization problem of finding pure Nash equilibria in Congestion Games, that has not been studied before from a smoothed analysis perspective. Specifically, we propose novel smoothed analysis models for general and Network Congestion Games, under various representations, including explicit, step-function, and polynomial resource latencies. We study PLS-hard instances of these problems and show that their standard local search algorithms run in polynomial smoothed time. Finally, we present further applications of our framework to a wide range of additional combinatorial problems, including local Max-Cut in weighted graphs, the Travelling Salesman problem (TSP) under the $k$-opt local heuristic, and finding pure equilibria in Network Coordination Games.