论文标题
K3表面熵和自态组
K3 surface entropy and automorphism groups
论文作者
论文摘要
我们得出了复杂的投影k3表面的表征,该表面具有其Néron-Severi晶格的正熵的自动形态。在此过程中,我们将零熵的投射K3表面与无限的自动形态组进行了分类,并确定Picard数字的投射K3表面至少五个,几乎是Abelian Automorthism群体,这为长期存在的Nikulin问题提供了答案。
We derive a characterization of the complex projective K3 surfaces which have automorphisms of positive entropy in term of their Néron-Severi lattices. Along the way, we classify the projective K3 surfaces of zero entropy with infinite automorphism groups and we determine the projective K3 surfaces of Picard number at least five with almost abelian automorphism groups, which gives an answer to a long standing question of Nikulin.