论文标题

OTFS-NOMA的低复杂性均衡和检测

Low-Complexity Equalization and Detection for OTFS-NOMA

论文作者

McWade, Stephen, Flanagan, Mark F., Farhang, Arman

论文摘要

正交时间频率空间(OTFS)调制最近已成为潜在的6G候选波形,可在高弹性场景中提供改善的性能。在本文中,我们研究了OTF与非正交多重访问(NOMA)的组合。 OTFS-NOMA的现有均衡和检测方法,例如最小平方英尺的误差并连续取消(MMSE-SIC),其性能差。此外,由于存在多用户干扰(MUI),因此基于低复合性迭代最小二乘求解器的单用户OTF的现有迭代方法不直接适用于Noma方案。由此激励,在本文中,我们提出了一种低复杂的方法,用于OTFS-NOMA的均等和检测。我们提出的方法使用一个迭代过程,在每种迭代中,基于最小二乘QR分解(LSQR)算法的均衡器之后是一个新型的可靠性区(RZ)检测方案,该方案估计用户的可靠符号,然后使用干涉取消进行消除MUI。我们提出了数值结果,这些结果证明了我们所提出的方法的优越性,即符号错误率(SER),比现有的MMSE-SIC基准方案。此外,我们提出的结果表明,RZ阈值的明智选择对于优化所提出的算法的性能很重要。

Orthogonal time frequency space (OTFS) modulation has recently emerged as a potential 6G candidate waveform which provides improved performance in high-mobility scenarios. In this paper we investigate the combination of OTFS with non-orthogonal multiple access (NOMA). Existing equalization and detection methods for OTFS-NOMA, such as minimum-mean-squared error with successive interference cancellation (MMSE-SIC), suffer from poor performance. Additionally, existing iterative methods for single-user OTFS based on low-complexity iterative least-squares solvers are not directly applicable to the NOMA scenario due to the presence of multi-user interference (MUI). Motivated by this, in this paper we propose a low-complexity method for equalization and detection for OTFS-NOMA. Our proposed method uses an iterative process where in each iteration, an equalizer based on the least-squares with QR factorization (LSQR) algorithm is followed by a novel reliability zone (RZ) detection scheme which estimates the reliable symbols of the users and then uses interference cancellation to remove MUI. We present numerical results which demonstrate the superiority of our proposed method, in terms of symbol error rate (SER), to the existing MMSE-SIC benchmark scheme. Additionally, we present results which illustrate that a judicious choice of RZ thresholds is important for optimizing the performance of the proposed algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源