论文标题
使用字典学习的新的可解释模式和大脑功能网络连接的歧视性特征
New Interpretable Patterns and Discriminative Features from Brain Functional Network Connectivity Using Dictionary Learning
论文作者
论文摘要
事实证明,多主体功能磁共振成像(fMRI)数据的独立组件分析(ICA)可用于提供可用于多种目的的完全多元摘要。 ICA可以识别可以区分健康对照(HC)和具有各种精神分裂症(SZ)等精神疾病的患者的模式。从ICA获得的时间功能网络连接(TFNC)可以有效解释大脑网络之间的相互作用。另一方面,字典学习(DL)可以通过使用稀疏性使用可学习的基础信号在数据中发现隐藏的信息。在本文中,我们提出了一种新方法,该方法利用ICA和DL来识别直接解释模式以区分HC和SZ组。我们使用来自$ 358 $主题的多个主体静止状态fMRI数据,并从ICA结果中使用特定于特定主题的TFNC特征向量。然后,我们学习了TFNC的稀疏表示形式,并引入了一套新的稀疏功能以及从学识渊博的原子中引入的新的可解释模式。我们的实验结果表明,新的表示不仅可以通过稀疏特征导致HC和SZ组之间的有效分类,而且还可以从学到的原子中识别出可解释的新模式,这些模式可以帮助了解精神分裂症等精神疾病的复杂性。
Independent component analysis (ICA) of multi-subject functional magnetic resonance imaging (fMRI) data has proven useful in providing a fully multivariate summary that can be used for multiple purposes. ICA can identify patterns that can discriminate between healthy controls (HC) and patients with various mental disorders such as schizophrenia (Sz). Temporal functional network connectivity (tFNC) obtained from ICA can effectively explain the interactions between brain networks. On the other hand, dictionary learning (DL) enables the discovery of hidden information in data using learnable basis signals through the use of sparsity. In this paper, we present a new method that leverages ICA and DL for the identification of directly interpretable patterns to discriminate between the HC and Sz groups. We use multi-subject resting-state fMRI data from $358$ subjects and form subject-specific tFNC feature vectors from ICA results. Then, we learn sparse representations of the tFNCs and introduce a new set of sparse features as well as new interpretable patterns from the learned atoms. Our experimental results show that the new representation not only leads to effective classification between HC and Sz groups using sparse features, but can also identify new interpretable patterns from the learned atoms that can help understand the complexities of mental diseases such as schizophrenia.