论文标题
推断干扰:用偏心重力波爆发时机识别扰动的第三纪
Inferring Interference: Identifying a Perturbing Tertiary with Eccentric Gravitational Wave Burst Timing
论文作者
论文摘要
[删节]二进制黑洞可能会形成并动态合并。这些二进制文件可能会与高偏心率结合,从而导致其最接近的重力辐射爆发。当这样的二进制受到第三体的扰动时,轨道的演变会受到影响,并改变了重力波爆发时间。因此,爆发时间编码有关第三纪的信息。为了提取此信息,我们需要针对第三级特性与重力波爆发时间之间关系的处方。在本文中,我们为世俗三体系统的爆发时间展示了一个玩具模型。我们展示了如何通过下一代地面的重力波检测器检测到爆发时如何使用贝叶斯推断来推断三级特性。我们研究了一个偏心二进制的爆发,总质量为$ 60 $ 〜m $ _ \ odot $绕$ 6 \ times 10^{8} $ 〜m $ $ _ \ odot $ supermassive Black Hole。当我们不了解怪异二进制的知识时,我们将无法严格限制第三级的存在或特性,并且我们为偏心二进制的参数恢复了有偏见的后验概率分布。但是,当二进制的属性已经众所周知时 - 可能还可以检测到已故的Inspiral和合并 - 我们能够更准确地推断出Perturber的质量,$ M_3 $及其距离二进制文件的距离。当我们对二进制参数的测量精度与对下一代重力波检测器的期望一致的二进制参数时,我们可能会大于$ 90 \%$ $ $ $ $。 [...]
[Abridged] Binary black holes may form and merge dynamically. These binaries are likely to become bound with high eccentricities, resulting in a burst of gravitational radiation at their point of closest approach. When such a binary is perturbed by a third body, the evolution of the orbit is affected, and gravitational-wave burst times are altered. The bursts times therefore encode information about the tertiary. In order to extract this information, we require a prescription for the relationship between the tertiary properties and the gravitational-wave burst times. In this paper, we demonstrate a toy model for the burst times of a secular three-body system. We show how Bayesian inference can be employed to deduce the tertiary properties when the bursts are detected by next-generation ground-based gravitational-wave detectors. We study the bursts from an eccentric binary with a total mass of $60$~M$_\odot$ orbiting an $6 \times 10^{8}$~M$_\odot$ supermassive black hole. When we assume no knowledge of the eccentric binary, we are unable to tightly constrain the existence or properties of the tertiary, and we recover biased posterior probability distributions for the parameters of the eccentric binary. However, when the properties of the binary are already well-known -- as is likely if the late inspiral and merger are also detected -- we are able to more accurately infer the mass of the perturber, $m_3$, and its distance from the binary, $R$. When we assume measurement precision on the binary parameters consistent with expectations for next-generation gravitational-wave detectors, we can be greater than $90\%$ confident that the binary is perturbed. [...]