论文标题
控制光腔
Controlling the magnetic state of the proximate quantum spin liquid $α$-RuCl$_3$ with an optical cavity
论文作者
论文摘要
利用在光腔中由模式体积压缩导致的增强的轻度耦合和量子真空波动,是使量子材料和实现物质外来状态功能化的有前途的途径。在这里,我们通过证明可以使用Fabry-Pérot腔来控制近端量子旋转液体$α$ -rucl $ _3 $来控制腔量量子电动力学材料工程至相关的磁系统。根据特定的空腔特性,例如模式频率,光子占用和光耦合的强度,可以稳定由扩展的Kitaev模型支撑的任何磁相。特别是,在THZ政权中,我们表明,仅腔真空波动就足以将$α$ -rucl $ _3 $从锯齿形抗Fiferromagnetic带到铁磁状态。通过在少数光子极限的外部泵送腔,进一步可能将系统推入抗磁性Kitaev Qutaev量子旋转液态。
Harnessing the enhanced light-matter coupling and quantum vacuum fluctuations resulting from mode volume compression in optical cavities is a promising route towards functionalizing quantum materials and realizing exotic states of matter. Here, we extend cavity quantum electrodynamical materials engineering to correlated magnetic systems, by demonstrating that a Fabry-Pérot cavity can be used to control the magnetic state of the proximate quantum spin liquid $α$-RuCl$_3$. Depending on specific cavity properties such as the mode frequency, photon occupation, and strength of the light-matter coupling, any of the magnetic phases supported by the extended Kitaev model can be stabilized. In particular, in the THz regime, we show that the cavity vacuum fluctuations alone are sufficient to bring $α$-RuCl$_3$ from a zigzag antiferromagnetic to a ferromagnetic state. By external pumping of the cavity in the few photon limit, it is further possible to push the system into the antiferromagnetic Kitaev quantum spin liquid state.