论文标题
线性光电电路的近似结果概率
Approximating outcome probabilities of linear optical circuits
论文作者
论文摘要
准重点表示是分析量子系统的重要工具,例如量子状态或量子电路。 在这项工作中,我们提出了专门针对使用$ S $参数化的准方法分布来近似线性光电路的结果概率的经典算法。值得注意的是,由于线性光学转换的规范性具有规范性,我们可以通过调节准稳定性分布的形状来从指数降低到最多多项式的负限制。 因此,根据电路的经典性,我们的方案将有效地估计结果概率。 令人惊讶的是,当经典性足够高时,我们在乘法误差中达到多项式时间估计算法。 我们的结果提供了量子启发的算法,用于近似于击败最著名结果的各种矩阵函数。此外,我们使用近似算法在多 - 帕克斯(Poly-Sparse)条件下使用近似算法对高斯玻色子采样的经典模拟性提供了足够的条件。 我们的研究阐明了线性光学的功能,为计算复杂性问题提供了大量量子启发的算法。
Quasiprobability representation is an important tool for analyzing a quantum system, such as a quantum state or a quantum circuit. In this work, we propose classical algorithms specialized for approximating outcome probabilities of a linear optical circuit using $s$-parameterized quasiprobability distributions. Notably, we can reduce the negativity bound of a circuit from exponential to at most polynomial for specific cases by modulating the shapes of quasiprobability distributions thanks to the norm-preserving property of a linear optical transformation. Consequently, our scheme renders an efficient estimation of outcome probabilities with precision depending on the classicality of the circuit. Surprisingly, when the classicality is high enough, we reach a polynomial-time estimation algorithm within a multiplicative error. Our results provide quantum-inspired algorithms for approximating various matrix functions beating best-known results. Moreover, we give sufficient conditions for the classical simulability of Gaussian boson sampling using the approximating algorithm for any (marginal) outcome probability under the poly-sparse condition. Our study sheds light on the power of linear optics, providing plenty of quantum-inspired algorithms for problems in computational complexity.