论文标题
无监督的星系形态学视觉表示,深层对比度学习
Unsupervised Galaxy Morphological Visual Representation with Deep Contrastive Learning
论文作者
论文摘要
星系形态反映了有助于了解星系的形成和演变的结构特性。事实证明,深度卷积网络在学习隐藏特征方面非常成功,这些特征允许在星系形态分类上进行前所未有的性能。此类网络主要遵循监督的学习范式,该范式需要足够的标记数据进行培训。但是,这是一百万个星系的昂贵且复杂的标签过程,尤其是对于即将进行的调查项目。在本文中,我们提出了一种基于对比度学习的方法,目的是仅使用未标记的数据学习星系形态的视觉表示。考虑到低语义信息的特性和占主导地位的星系图像的轮廓,该方法的特征提取层结合了视觉变压器和卷积网络,以通过融合多层结构特征来提供丰富的语义表示。我们对来自Galaxy Zoo 2和SDSS-DR17的数据集的3个分类进行训练并测试我们的方法,以及来自Galaxy Zoo贴花的4种分类。测试精度分别达到94.7%,96.5%和89.9%。交叉验证的实验表明,当应用于新数据集时,我们的模型具有传递和概括能力。揭示我们提出的方法和预算模型的代码已公开可用,并且可以轻松适应新的调查。
Galaxy morphology reflects structural properties which contribute to understand the formation and evolution of galaxies. Deep convolutional networks have proven to be very successful in learning hidden features that allow for unprecedented performance on galaxy morphological classification. Such networks mostly follow the supervised learning paradigm which requires sufficient labelled data for training. However, it is an expensive and complicated process of labeling for million galaxies, particularly for the forthcoming survey projects. In this paper, we present an approach based on contrastive learning with aim for learning galaxy morphological visual representation using only unlabeled data. Considering the properties of low semantic information and contour dominated of galaxy image, the feature extraction layer of the proposed method incorporates vision transformers and convolutional network to provide rich semantic representation via the fusion of the multi-hierarchy features. We train and test our method on 3 classifications of datasets from Galaxy Zoo 2 and SDSS-DR17, and 4 classifications from Galaxy Zoo DECaLS. The testing accuracy achieves 94.7%, 96.5% and 89.9% respectively. The experiment of cross validation demonstrates our model possesses transfer and generalization ability when applied to the new datasets. The code that reveals our proposed method and pretrained models are publicly available and can be easily adapted to new surveys.