论文标题

在移动边缘计算中保留联合学习的最佳隐私

Optimal Privacy Preserving for Federated Learning in Mobile Edge Computing

论文作者

Nguyen, Hai M., Chu, Nam H., Nguyen, Diep N., Hoang, Dinh Thai, Nguyen, Van-Dinh, Ha, Minh Hoang, Dutkiewicz, Eryk, Krunz, Marwan

论文摘要

通过量化和故意添加无线网络上的噪声的联合学习(FL)是保留用户差异隐私(DP)同时减少无线资源的有前途的方法。具体而言,可以将FL过程与多个用户贡献的基于二项式机制的量化更新融合。但是,优化量化参数,通信资源(例如传输功率,带宽和量化位)以及增加的噪声以保证学习的FL模型的DP要求和性能仍然是一个开放且具有挑战性的问题。本文旨在共同优化量化和二项式机制参数和通信资源,以最大化无线网络和DP要求的约束下的收敛速率。为此,我们首先以量化/噪声比最新的结合更紧密地得出了对FL的新型DP预算估计。然后,我们对收敛率提供理论结合。该理论结合分解为两个组成部分,包括全局梯度的方差和可以通过优化通信资源和量化/噪声参数来最小化的二次偏差的方差。结果的优化事实证明是一个混合成员的非线性编程(MINLP)问题。为了解决这个问题,我们首先将这个MINLP问题转换为一个新问题,该问题被证明是原始解决方案的最佳解决方案。然后,我们提出了一种近似算法,以使用任意的相对误差保证解决转换的问题。广泛的模拟表明,在相同的无线资源约束和DP保护要求下,提出的近似算法实现了接近传统FL准确性而没有量化/噪声的准确性。结果可以达到更高的收敛率,同时保留用户的隐私。

Federated Learning (FL) with quantization and deliberately added noise over wireless networks is a promising approach to preserve user differential privacy (DP) while reducing wireless resources. Specifically, an FL process can be fused with quantized Binomial mechanism-based updates contributed by multiple users. However, optimizing quantization parameters, communication resources (e.g., transmit power, bandwidth, and quantization bits), and the added noise to guarantee the DP requirement and performance of the learned FL model remains an open and challenging problem. This article aims to jointly optimize the quantization and Binomial mechanism parameters and communication resources to maximize the convergence rate under the constraints of the wireless network and DP requirement. To that end, we first derive a novel DP budget estimation of the FL with quantization/noise that is tighter than the state-of-the-art bound. We then provide a theoretical bound on the convergence rate. This theoretical bound is decomposed into two components, including the variance of the global gradient and the quadratic bias that can be minimized by optimizing the communication resources, and quantization/noise parameters. The resulting optimization turns out to be a Mixed-Integer Non-linear Programming (MINLP) problem. To tackle it, we first transform this MINLP problem into a new problem whose solutions are proved to be the optimal solutions of the original one. We then propose an approximate algorithm to solve the transformed problem with an arbitrary relative error guarantee. Extensive simulations show that under the same wireless resource constraints and DP protection requirements, the proposed approximate algorithm achieves an accuracy close to the accuracy of the conventional FL without quantization/noise. The results can achieve a higher convergence rate while preserving users' privacy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源