论文标题
一般性的相关性中微子放射磁性水力动力学模拟了秒长的黑孔 - 中子星星合并:依赖于初始磁场强度,构型和中子星的状态方程
General-relativistic neutrino-radiation magnetohydrodynamics simulation of seconds-long black hole-neutron star mergers: Dependence on initial magnetic field strength, configuration, and neutron-star equation of state
论文作者
论文摘要
作为对我们先前工作的后续研究,对几秒钟的黑洞中子星星合并进行了数字余量模拟,以进行各种设置。无论初始和对称条件如何,我们都会发现定性的通用演化过程:动态质量弹出是在中子星潮湿后的大量积聚盘形成的同时进行的;随后,吸积盘中的磁场会因磁绕组,开尔文 - 螺旋杆菌不稳定性和磁化不稳定性而扩大,从而建立了湍流状态,从而诱导了发电机和角动量传输;合并后的质量弹出作用是由磁性水力动力学的有效粘性工艺设置为$ \ sim300 $ - $ 500 $ - $ 500 $ MS,并继续进行数百ms;开发了黑洞旋转轴附近的磁层,并以$ \ sim0.5 $ - $ 2 $ s的寿命产生准直的po弹通量。我们新发现,无赤道平面对称性的模型显示磁层中磁场极性的相反,这是由与积聚磁盘中磁化磁不稳定性相关的发电机引起的。最初带有环形场的模型显示,由于各向异性后连线后质量排斥,在合并后阶段晚期的磁层倾斜。这些效果可能会在$ \ sim0.5 $ -2 $ s的时间表内终止强大的luminosity阶段。
As a follow-up study of our previous work, numerical-relativity simulations for seconds-long black hole-neutron star mergers are performed for a variety of setups. Irrespective of the initial and symmetry conditions, we find qualitatively universal evolution processes: The dynamical mass ejection takes place together with a massive accretion disk formation after the neutron star is tidally disrupted; Subsequently, the magnetic field in the accretion disk is amplified by the magnetic winding, Kelvin-Helmholtz instability, and magnetorotational instability, which establish a turbulent state inducing the dynamo and angular momentum transport; The post-merger mass ejection by the effective viscous processes stemming from the magnetohydrodynamics turbulence sets in at $\sim300$-$500$ ms after the merger and continues for several hundred ms; A magnetosphere near the black-hole spin axis is developed and the collimated strong Poynting flux is generated with its lifetime of $\sim0.5$-$2$ s. We have newly found that the model of no equatorial-plane symmetry shows the reverse of the magnetic-field polarity in the magnetosphere, which is caused by the dynamo associated with the magnetorotational instability in the accretion disk. The model with initially toroidal fields shows the tilt of the disk and magnetosphere in the late post-merger stage because of the anisotropic post-merger mass ejection. These effects could terminate the strong Poynting-luminosity stage within the timescale of $\sim0.5$-$2$ s.