论文标题

关于减少瓷砖问题的注释

A note on reduction of tiling problems

论文作者

Meyerovitch, Tom, Sanadhya, Shrey, Solomon, Yaar

论文摘要

我们表明,可以通过$ \ Mathbb {z}^d $中的翻译瓷砖问题有效地减少$ \ mathbb {z}^d $商的转化瓷砖问题。特别是,对于任何$ d \ in \ mathbb {n} $,$ k <d $和$ n_1,\ ldots,n_k \ in \ mathbb {n} $,存在于$ \ \ \ mthbb {z}^{z}^d-k}^{d-k}^{d-k} {d-k} {d \ timit(z \ z {z {z {z {z {z {z { \ times \ ldots \ times \ mathbb {z} / n_k \ mathbb {z})$意味着在$ \ mathbb {z}^d $中存在上的aperiodic瓷砖。 Greenfeld和Tao最近以$ \ Mathbb {Z}^d $中的众所周知的周期性瓷砖猜想,用于足够大的$ d \ in \ Mathbb {n} $,通过在$ \ \ \ m m iathbb {n} $中构建aperiodic瓷砖,以$ \ mathbb {z}^{z} \ times \ ldots \ times \ times \ mathbb {z} / n_k \ mathbb {z})$用于合适的$ d,n_1,\ ldots,n_k \ in \ mathbb {n} $。

We show that translational tiling problems in a quotient of $\mathbb{Z}^d$ can be effectively reduced or ``simulated'' by translational tiling problems in $\mathbb{Z}^d$. In particular, for any $d \in \mathbb{N}$, $k < d$ and $N_1,\ldots,N_k \in \mathbb{N}$ the existence of an aperiodic tile in $\mathbb{Z}^{d-k} \times (\mathbb{Z} / N_1\mathbb{Z} \times \ldots \times \mathbb{Z} / N_k \mathbb{Z})$ implies the existence of an aperiodic tile in $\mathbb{Z}^d$. Greenfeld and Tao have recently disproved the well-known periodic tiling conjecture in $\mathbb{Z}^d$ for sufficiently large $d \in \mathbb{N}$ by constructing an aperiodic tile in $\mathbb{Z}^{d-k} \times (\mathbb{Z} / N_1\mathbb{Z} \times \ldots \times \mathbb{Z} / N_k \mathbb{Z})$ for suitable $d,N_1,\ldots,N_k \in \mathbb{N}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源