论文标题
多项选择阅读理解中的世界知识
World Knowledge in Multiple Choice Reading Comprehension
论文作者
论文摘要
最近,已经显示,如果没有任何访问上下文段落的访问,多项选择阅读理解(MCRC)系统能够平均回答比随机的问题要好得多。这些系统使用其积累的“世界知识”直接回答问题,而不是使用段落中的信息。本文研究了将这种观察结果作为测试设计师的工具确保使用“世界知识”的可能性。我们提出了基于信息理论的指标,以评估系统所利用的“世界知识”级别。描述了两个指标:预期的选项数量,这些选项数量可以衡量无段时间系统是否可以使用世界知识来识别问题;以及上下文相互信息,该信息衡量了上下文对于给定问题的重要性。我们证明,预期次数数量较低的问题,因此可以通过捷径系统回答的问题,通常没有上下文可以同样回答。这凸显了一般知识“快捷方式”可以由考试候选人平均使用,并且我们提出的指标可能有助于未来的测试设计师监视问题的质量。
Recently it has been shown that without any access to the contextual passage, multiple choice reading comprehension (MCRC) systems are able to answer questions significantly better than random on average. These systems use their accumulated "world knowledge" to directly answer questions, rather than using information from the passage. This paper examines the possibility of exploiting this observation as a tool for test designers to ensure that the use of "world knowledge" is acceptable for a particular set of questions. We propose information-theory based metrics that enable the level of "world knowledge" exploited by systems to be assessed. Two metrics are described: the expected number of options, which measures whether a passage-free system can identify the answer a question using world knowledge; and the contextual mutual information, which measures the importance of context for a given question. We demonstrate that questions with low expected number of options, and hence answerable by the shortcut system, are often similarly answerable by humans without context. This highlights that the general knowledge 'shortcuts' could be equally used by exam candidates, and that our proposed metrics may be helpful for future test designers to monitor the quality of questions.