论文标题

Ginzburg-Landau的描述和紧急超对称性$(3,8)$最小模型

Ginzburg-Landau Description and Emergent Supersymmetry of the $(3,8)$ Minimal Model

论文作者

Klebanov, Igor R., Narovlansky, Vladimir, Sun, Zimo, Tarnopolsky, Grigory

论文摘要

众所周知,一对2D非自动最小型号$ M(2,5)$相当于$ M(3,10)$最小型号的变体。我们讨论了从该模型到另一个非自动最小模型的RG流量,即$ m(3,8)$。这为其先前提出的金茨堡 - 兰道的描述提供了新的证据,这是两个标量与立方相互作用的标量字段的$ \ mathbb {z} _2 $对称理论。我们还指出,$ m(3,8)$等同于$(2,8)$的超符号最小型号,对角模块化不变。使用与立方相互作用的标量场理论的5循环结果,我们展示了各种操作员尺寸的$6-ε$扩展。他们的外推与2D的确切结果非常吻合。我们还使用它们将$ M(3,8)$通用类中理论的$ d = 3,4,5 $中的缩放维度近似。

A pair of the 2D non-unitary minimal models $M(2,5)$ is known to be equivalent to a variant of the $M(3,10)$ minimal model. We discuss the RG flow from this model to another non-unitary minimal model, $M(3,8)$. This provides new evidence for its previously proposed Ginzburg-Landau description, which is a $\mathbb{Z}_2$ symmetric theory of two scalar fields with cubic interactions. We also point out that $M(3,8)$ is equivalent to the $(2,8)$ superconformal minimal model with the diagonal modular invariant. Using the 5-loop results for theories of scalar fields with cubic interactions, we exhibit the $6-ε$ expansions of the dimensions of various operators. Their extrapolations are in quite good agreement with the exact results in 2D. We also use them to approximate the scaling dimensions in $d=3,4,5$ for the theories in the $M(3,8)$ universality class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源