论文标题

使用联合可能性密度图和合成融合金字塔网络进行比例感知人群计数

Scale-Aware Crowd Counting Using a Joint Likelihood Density Map and Synthetic Fusion Pyramid Network

论文作者

Hsieh, Yi-Kuan, Hsieh, Jun-Wei, Tseng, Yu-Chee, Chang, Ming-Ching, Wang, Bor-Shiun

论文摘要

我们开发了一个合成融合金字塔网络(SPF-NET),其具有量表感知的损失功能设计,以进行准确的人群计数。现有的人群计数方法假设训练注释点是准确的,因此忽略了这样一个事实,即嘈杂的注释会导致较大的模型学习偏见和计数错误,尤其是计算出遥远的人群的高度密集的人群。据我们所知,这项工作是第一个在端到端损失设计中正确处理多个尺度上的噪音的工作,从而推动了人群计数的最新时间。我们将人群注释的噪声模拟为高斯,并从输入图像中得出人群概率密度图。然后,我们将人群密度图的联合分布与多个量表的完整协方差近似,并得出低级近似值,以实现障碍性和有效的实现。派生的比例感知损失函数用于训练SPF-NET。我们表明,它在四个公共数据集上的表现优于各种损失功能:UCF-QNRF,UCF CC 50,NWPU和Shanghaitech A-B数据集。拟议的SPF-NET可以准确地预测人群中人们的位置,尽管训练了嘈杂的培训注释。

We develop a Synthetic Fusion Pyramid Network (SPF-Net) with a scale-aware loss function design for accurate crowd counting. Existing crowd-counting methods assume that the training annotation points were accurate and thus ignore the fact that noisy annotations can lead to large model-learning bias and counting error, especially for counting highly dense crowds that appear far away. To the best of our knowledge, this work is the first to properly handle such noise at multiple scales in end-to-end loss design and thus push the crowd counting state-of-the-art. We model the noise of crowd annotation points as a Gaussian and derive the crowd probability density map from the input image. We then approximate the joint distribution of crowd density maps with the full covariance of multiple scales and derive a low-rank approximation for tractability and efficient implementation. The derived scale-aware loss function is used to train the SPF-Net. We show that it outperforms various loss functions on four public datasets: UCF-QNRF, UCF CC 50, NWPU and ShanghaiTech A-B datasets. The proposed SPF-Net can accurately predict the locations of people in the crowd, despite training on noisy training annotations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源