论文标题
具有短距离电势的2D磁性Weyl-Dirac操作员的光谱特性
Spectral properties of the 2D magnetic Weyl-Dirac operator with a short-range potential
论文作者
论文摘要
This paper is devoted to the study of the spectral properties of the Weyl-Dirac or massless Dirac operators, describing the behavior of quantum quasi-particles in dimension 2 in a homogeneous magnetic field, $B^{\rm ext}$, perturbed by a chiral-magnetic field, $b^{\rm ind}$, with decay at infinity and a short-range scalar electric potential, Bessel-Macdonald类型的$ V $。这些操作员从最近以欧元为欧元提议的原始石墨烯式Qed $ _3 $型号的动作中脱颖而出。物理。 J. B93}(2020)187。首先,我们在Zeroth和第一个(退化)Landau级别之间的Weyl-Dirac运营商的离散频谱中建立了状态的存在,假设$ v = 0 $。顺便说一句,$ v_s \ not = 0 $,其中$ v_s $是与$ s $ - 波相关的有吸引力的潜力,在分析$ s $ - 和$ s $ - 和$ p $ -wave-wave-waveMøller散射潜力中,在原始石墨烯型Qed $ _3 $模型中,我们提供了$ _3 $的boff use的bombouse use for Eus of eige e Emignval | \ cdot \ boldsymbol {p} _ {\ boldsymbol {a} _ \ pm} |+ v_s $。在这里,$ \boldsymbolσ$是Pauli矩阵的向量,$ \ boldsymbol {p} _ {\ boldsymbol {\ boldsymbol {a} _ \ pm} = \ boldsymbol {p} - \ boldsymbol $ \ boldsymbol {p} = - i \ boldsymbol {\ nabla} $二维动量运算符和$ \ boldsymbol {a} _ \ pm $某些磁性向量电位。作为其中的副产品,在存在磁场的情况下,我们具有在石墨烯中双二极子的稳定性。
This paper is devoted to the study of the spectral properties of the Weyl-Dirac or massless Dirac operators, describing the behavior of quantum quasi-particles in dimension 2 in a homogeneous magnetic field, $B^{\rm ext}$, perturbed by a chiral-magnetic field, $b^{\rm ind}$, with decay at infinity and a short-range scalar electric potential, $V$, of the Bessel-Macdonald type. These operators emerge from the action of a pristine graphene-like QED$_3$ model recently proposed in Eur. Phys. J. B93} (2020) 187. First, we establish the existence of states in the discrete spectrum of the Weyl-Dirac operators between the zeroth and the first (degenerate) Landau level assuming that $V=0$. In sequence, with $V_s \not= 0$, where $V_s$ is an attractive potential associated with the $s$-wave, which emerges when analyzing the $s$- and $p$-wave Møller scattering potentials among the charge carriers in the pristine graphene-like QED$_3$ model, we provide lower bounds for the sum of the negative eigenvalues of the operators $|\boldsymbolσ \cdot \boldsymbol{p}_{\boldsymbol{A}_\pm}|+ V_s$. Here, $\boldsymbolσ$ is the vector of Pauli matrices, $\boldsymbol{p}_{\boldsymbol{A}_\pm}=\boldsymbol{p}-\boldsymbol{A}_\pm$, with $\boldsymbol{p}=-i\boldsymbol{\nabla}$ the two-dimensional momentum operator and $\boldsymbol{A}_\pm$ certain magnetic vector potentials. As a by-product of this, we have the stability of bipolarons in graphene in the presence of magnetic fields.