论文标题

具有短距离电势的2D磁性Weyl-Dirac操作员的光谱特性

Spectral properties of the 2D magnetic Weyl-Dirac operator with a short-range potential

论文作者

Alves, M. B., Del Cima, O. M., Franco, D. H. T., Pereira, E. A.

论文摘要

This paper is devoted to the study of the spectral properties of the Weyl-Dirac or massless Dirac operators, describing the behavior of quantum quasi-particles in dimension 2 in a homogeneous magnetic field, $B^{\rm ext}$, perturbed by a chiral-magnetic field, $b^{\rm ind}$, with decay at infinity and a short-range scalar electric potential, Bessel-Macdonald类型的$ V $。这些操作员从最近以欧元为欧元提议的原始石墨烯式Qed $ _3 $型号的动作中脱颖而出。物理。 J. B93}(2020)187。首先,我们在Zeroth和第一个(退化)Landau级别之间的Weyl-Dirac运营商的离散频谱中建立了状态的存在,假设$ v = 0 $。顺便说一句,$ v_s \ not = 0 $,其中$ v_s $是与$ s $ - 波相关的有吸引力的潜力,在分析$ s $ - 和$ s $ - 和$ p $ -wave-wave-waveMøller散射潜力中,在原始石墨烯型Qed $ _3 $模型中,我们提供了$ _3 $的boff use的bombouse use for Eus of eige e Emignval | \ cdot \ boldsymbol {p} _ {\ boldsymbol {a} _ \ pm} |+ v_s $。在这里,$ \boldsymbolσ$是Pauli矩阵的向量,$ \ boldsymbol {p} _ {\ boldsymbol {\ boldsymbol {a} _ \ pm} = \ boldsymbol {p} - \ boldsymbol $ \ boldsymbol {p} = - i \ boldsymbol {\ nabla} $二维动量运算符和$ \ boldsymbol {a} _ \ pm $某些磁性向量电位。作为其中的副产品,在存在磁场的情况下,我们具有在石墨烯中双二极子的稳定性。

This paper is devoted to the study of the spectral properties of the Weyl-Dirac or massless Dirac operators, describing the behavior of quantum quasi-particles in dimension 2 in a homogeneous magnetic field, $B^{\rm ext}$, perturbed by a chiral-magnetic field, $b^{\rm ind}$, with decay at infinity and a short-range scalar electric potential, $V$, of the Bessel-Macdonald type. These operators emerge from the action of a pristine graphene-like QED$_3$ model recently proposed in Eur. Phys. J. B93} (2020) 187. First, we establish the existence of states in the discrete spectrum of the Weyl-Dirac operators between the zeroth and the first (degenerate) Landau level assuming that $V=0$. In sequence, with $V_s \not= 0$, where $V_s$ is an attractive potential associated with the $s$-wave, which emerges when analyzing the $s$- and $p$-wave Møller scattering potentials among the charge carriers in the pristine graphene-like QED$_3$ model, we provide lower bounds for the sum of the negative eigenvalues of the operators $|\boldsymbolσ \cdot \boldsymbol{p}_{\boldsymbol{A}_\pm}|+ V_s$. Here, $\boldsymbolσ$ is the vector of Pauli matrices, $\boldsymbol{p}_{\boldsymbol{A}_\pm}=\boldsymbol{p}-\boldsymbol{A}_\pm$, with $\boldsymbol{p}=-i\boldsymbol{\nabla}$ the two-dimensional momentum operator and $\boldsymbol{A}_\pm$ certain magnetic vector potentials. As a by-product of this, we have the stability of bipolarons in graphene in the presence of magnetic fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源