论文标题
使用CGAN对ECG纸记录进行自动铅提取和数字化
Auto Lead Extraction and Digitization of ECG Paper Records using cGAN
论文作者
论文摘要
目的:心电图(ECG)是最简单,最快的生物医学测试,用于检测任何与心脏有关的疾病。 ECG信号通常以纸张形式存储,这使得很难存储和分析数据。在从纸质ECG记录中捕获ECG的引线时,还捕获了许多背景信息,从而导致数据解释不正确。 方法:我们提出了一个基于深度学习的模型,用于单独从使用摄像机捕获的12个铅ECG图像中提取所有12条线索。为了简化对心电图的分析和复杂参数的计算,我们还提出了一种将纸张ECG格式转换为可存储的数字格式的方法。您只看一次,版本3(Yolov3)算法已用于提取图像中存在的潜在客户。然后将这些引线传递到另一个深度学习模型,该模型将ECG信号和背景与单铅图像分开。之后,对ECG信号进行垂直扫描将其转换为1维(1D)数字形式。为了执行数字化任务,我们使用了Pix-2-Pix深度学习模型,并将ECG信号二进制。 结果:我们提出的方法能够达到97.4%的精度。 结论:随着时间的流逝,纸质ECG上的信息消失了。因此,数字化的心电图信号使得可以存储记录并随时访问记录。事实证明,这对于需要经常进行心电图报告的心脏病患者非常有益。存储的数据也可用于研究目的,因为该数据可用于开发能够分析数据的计算机算法。
Purpose: An Electrocardiogram (ECG) is the simplest and fastest bio-medical test that is used to detect any heart-related disease. ECG signals are generally stored in paper form, which makes it difficult to store and analyze the data. While capturing ECG leads from paper ECG records, a lot of background information is also captured, which results in incorrect data interpretation. Methods: We propose a deep learning-based model for individually extracting all 12 leads from 12-lead ECG images captured using a camera. To simplify the analysis of the ECG and the calculation of complex parameters, we also propose a method to convert the paper ECG format into a storable digital format. The You Only Look Once, Version 3 (YOLOv3) algorithm has been used to extract the leads present in the image. These leads are then passed on to another deep learning model which separates the ECG signal and background from the single-lead image. After that, vertical scanning is performed on the ECG signal to convert it into a 1-Dimensional (1D) digital form. To perform the task of digitalization, we used the pix-2-pix deep learning model and binarized the ECG signals. Results: Our proposed method was able to achieve an accuracy of 97.4 %. Conclusion: The information on the paper ECG fades away over time. Hence, the digitized ECG signals make it possible to store the records and access them anytime. This proves highly beneficial for heart patients who require frequent ECG reports. The stored data can also be useful for research purposes, as this data can be used to develop computer algorithms that are capable of analyzing the data.