论文标题
使用神经缝纫机进行结构的3D服装建模
Structure-Preserving 3D Garment Modeling with Neural Sewing Machines
论文作者
论文摘要
3D服装建模是计算机视觉和图形领域的一个至关重要且具有挑战性的话题,越来越多的注意力集中在服装表示,服装重建和可控制的服装操作上,而现有方法则被限制在特定类别或相对简单的拓扑下的模型服装。在本文中,我们提出了一种新型的神经缝纫机(NSM),这是一种基于学习的框架,用于结构构成3D服装建模,该框架能够为具有不同形状和拓扑的服装学习表示,并成功地应用于3D服装重建和可控制的操作。为了建模通用服装,我们首先通过编码统一的缝纫模式嵌入缝纫模式,因为缝纫模式可以准确地描述3D服装的内在结构和拓扑。然后,我们使用3D服装解码器使用带有口罩的UV位置地图解码将缝纫模式嵌入3D服装中。为了保留预测的3D服装的内在结构,我们引入了内部面板结构的损失,具有面板间结构的损失以及在我们框架学习过程中的表面正态损失。我们在公共3D服装数据集上评估了NSM,其缝纫模式具有不同的服装形状和类别。广泛的实验表明,拟议的NSM能够在不同的服装形状和拓扑的情况下代表3D服装,实际上,实际上从具有保存的结构的2D图像中重建了3D服装,并且可以通过明确的Margins of-Art-Art Margins进行表现,从而准确地操纵了3D服装类别,形状和拓扑。
3D Garment modeling is a critical and challenging topic in the area of computer vision and graphics, with increasing attention focused on garment representation learning, garment reconstruction, and controllable garment manipulation, whereas existing methods were constrained to model garments under specific categories or with relatively simple topologies. In this paper, we propose a novel Neural Sewing Machine (NSM), a learning-based framework for structure-preserving 3D garment modeling, which is capable of learning representations for garments with diverse shapes and topologies and is successfully applied to 3D garment reconstruction and controllable manipulation. To model generic garments, we first obtain sewing pattern embedding via a unified sewing pattern encoding module, as the sewing pattern can accurately describe the intrinsic structure and the topology of the 3D garment. Then we use a 3D garment decoder to decode the sewing pattern embedding into a 3D garment using the UV-position maps with masks. To preserve the intrinsic structure of the predicted 3D garment, we introduce an inner-panel structure-preserving loss, an inter-panel structure-preserving loss, and a surface-normal loss in the learning process of our framework. We evaluate NSM on the public 3D garment dataset with sewing patterns with diverse garment shapes and categories. Extensive experiments demonstrate that the proposed NSM is capable of representing 3D garments under diverse garment shapes and topologies, realistically reconstructing 3D garments from 2D images with the preserved structure, and accurately manipulating the 3D garment categories, shapes, and topologies, outperforming the state-of-the-art methods by a clear margin.