论文标题

使用自我监督框架嵌入的有效语音质量评估

Efficient Speech Quality Assessment using Self-supervised Framewise Embeddings

论文作者

Hajal, Karl El, Wu, Zihan, Scheidwasser-Clow, Neil, Elbanna, Gasser, Cernak, Milos

论文摘要

自动语音质量评估对于音频研究人员,开发人员,语音病理学家以及系统质量工程师至关重要。当前的最新系统基于框架语音特征(手工设计或可学习)与时间依赖建模相结合。本文提出了一个有效的系统,其结果与CharceencingsPeech 2022挑战中最佳性能模型相当。我们提出的系统的特征是较小的参数(40-60x),较少的拖鞋(100倍),较低的存储器消耗(10-15x)和较低的潜伏期(30倍)。因此,语音质量从业人员可以更快地迭代,在资源有限的硬件上部署系统,总体而言,拟议的系统有助于可持续的机器学习。本文还得出结论,框架嵌入优于说服级的嵌入方式,并且具有声学条件建模的多任务训练不会在提供更好的解释的同时降低语音质量预测。

Automatic speech quality assessment is essential for audio researchers, developers, speech and language pathologists, and system quality engineers. The current state-of-the-art systems are based on framewise speech features (hand-engineered or learnable) combined with time dependency modeling. This paper proposes an efficient system with results comparable to the best performing model in the ConferencingSpeech 2022 challenge. Our proposed system is characterized by a smaller number of parameters (40-60x), fewer FLOPS (100x), lower memory consumption (10-15x), and lower latency (30x). Speech quality practitioners can therefore iterate much faster, deploy the system on resource-limited hardware, and, overall, the proposed system contributes to sustainable machine learning. The paper also concludes that framewise embeddings outperform utterance-level embeddings and that multi-task training with acoustic conditions modeling does not degrade speech quality prediction while providing better interpretation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源