论文标题
偏向衍生的质子环的通勤性
On commutativity of prime rings with skew derivations
论文作者
论文摘要
令$ \ mathscr {r} $为char $(\ mathscr {r})\ neq 2 $和$ m \ neq 1 $的主要环为正整数。如果$ s $是一个非零偏斜的推导,具有相关的自动构成$ \ mathscr {t} $的$ \ mathscr {r} $,以至于$([s([a,b]),[a,b]),[a,b])^{m} = [m} = [s(a,b]),[a,b]),[a,b]) $ \ mathscr {r} $是交换性的。
Let $\mathscr{R}$ be a prime ring of Char$(\mathscr{R}) \neq 2$ and $m\neq 1$ be a positive integer. If $S$ is a nonzero skew derivation with an associated automorphism $\mathscr{T}$ of $\mathscr{R}$ such that $([S([a, b]), [a, b]])^{m} = [S([a, b]), [a, b]]$ for all $a, b \in \mathscr{R}$, then $\mathscr{R}$ is commutative.