论文标题

从头算广义的langevin方程

Ab Initio Generalized Langevin Equation

论文作者

Xie, Pinchen, Car, Roberto, E, Weinan

论文摘要

我们介绍了一种基于机器学习的方法,称为Ab Initife概括性兰格文方程(AIGLE),以建模材料和分子中慢速集体变量的动力学。在此方案中,参数是从基于量子量子机械模型的原子模拟中学到的。力场,记忆内核和噪声发生器是在波动 - 散落定理的约束下构建的。结合深层潜在的分子动力学和电子密度函数理论,这种方法为在各种情况下的多尺度建模打开了道路。在这里,我们通过对钛酸盐铅的两个中尺度过程的研究来证明这种能力,即平面铁电域壁的野外驱动动力学以及粗粒电偶极子的广泛晶格的动力学。在第一种情况下,Aigle将Ab Intible模拟的范围扩展到了分子动力学无法访问的噪声驱动动作的制度。在第二种情况下,Aigle通过采用局部近似值来处理一组广泛的集体变量,并仅保留短距离噪声相关性。该方案在计算上比分子动力学的计算效率更高,并在低频下模仿显微频率的微观动力学,在该动力学上它可以准确地重现主要的远红外吸收频率。

We introduce a machine learning-based approach called ab initio generalized Langevin equation (AIGLE) to model the dynamics of slow collective variables in materials and molecules. In this scheme, the parameters are learned from atomistic simulations based on ab initio quantum mechanical models. Force field, memory kernel, and noise generator are constructed in the context of the Mori-Zwanzig formalism, under the constraint of the fluctuation-dissipation theorem. Combined with deep potential molecular dynamics and electronic density functional theory, this approach opens the way to multi-scale modeling in a variety of situations. Here, we demonstrate this capability with a study of two mesoscale processes in crystalline lead titanate, namely the field-driven dynamics of a planar ferroelectric domain wall, and the dynamics of an extensive lattice of coarse-grained electric dipoles. In the first case, AIGLE extends the reach of ab initio simulations to a regime of noise-driven motions not accessible to molecular dynamics. In the second case, AIGLE deals with an extensive set of collective variables by adopting a local approximation for the memory kernel and retaining only short-range noise correlations. The scheme is computationally more efficient than molecular dynamics by several orders of magnitude, and mimics the microscopic dynamics at low frequencies where it reproduces accurately the dominant far-infrared absorption frequency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源