论文标题
量子统计力学通过边界条件。量子自旋系统的类固醇方法
Quantum Statistical Mechanics via Boundary Conditions. A Groupoid Approach to Quantum Spin Systems
论文作者
论文摘要
我们使用旋转代数的类模型通过泊松点过程表示在量子旋转系统上引入边界条件。我们可以通过一组类似于经典统计力学的标准DLR方程来描述量子系统的KMS状态。我们引入了量子规范的概念,该量子在经典相互作用的特定情况下恢复了经典的DLR度量。我们的结果与Cha,Naaijkens和Nachtergaele最近获得的结果相同,与Fannes和Werner的预测不同。
We use a groupoid model for the spin algebra to introduce boundary conditions on quantum spin systems via a Poisson point process representation. We can describe KMS states of quantum systems by means of a set of equations resembling the standard DLR equations of classical statistical mechanics. We introduce a notion of quantum specification which recovers the classical DLR measures in the particular case of classical interactions. Our results are in the same direction as those obtained recently by Cha, Naaijkens, and Nachtergaele, differently somehow from the predicted by Fannes and Werner.