论文标题
igusa-todorov $ ϕ $ -Dimension on Morita上下文代数
The Igusa-Todorov $ϕ$-dimension on Morita context algebras
论文作者
论文摘要
在本文中,我们证明,在某些假设下,莫里塔语境代数为零bimodule形态的代数具有有限的$ ϕ $ dimension。我们还研究了代数及其相反的$ ϕ $数量的行为。特别是我们表明,ARTIN代数的$ ϕ $ - 数不对称,即存在有限的维数代数$ a $ a $,因此$ ϕ \ dim(a)\ not = ϕ \ dim(a^{op})$。
In this article we prove that, under certain hypotheses, Morita context algebras that have zero bimodule morphisms have finite $ϕ$-dimension. We also study the behaviour of the $ϕ$-dimension for an algebra and its opposite. In particular we show that the $ϕ$-dimension of an Artin algebra is not symmetric, i.e. there exists a finite dimensional algebra $A$ such that $ϕ\dim (A) \not = ϕ\dim (A^{op})$.