论文标题

实用量子计算的自适应基集

Adaptive Basis Sets for Practical Quantum Computing

论文作者

Kwon, Hyuk-Yong, Curtin, Gregory M., Morrow, Zachary, Kelley, C. T., Jakubikova, Elena

论文摘要

对于H $ _2 $,H $ _2 $ O,LIH和BEH $ _2 $,具有化学精度的电子结构计算仍然是当前一代嘈杂的中间尺度量子(NISQ)设备的挑战。原因之一是,由于设备限制,仅在量子化学计算中通常应用最小的基集,这使得一个人最少可以保持计算中使用的量子数量。但是,最小值集的使用导致计算的分子能以及势能表面形状的误差很大。提高电子结构计算准确性的一种方法是通过开发小基集的开发,该集合更适合量子计算。在这项工作中,我们表明使用自适应基集的使用,其中指数和收缩系数取决于分子结构,它提供了一种简单的方法,可以极大地提高量子化学计算的准确性,而无需增加基集尺寸,从而增加了量子电路中使用的Qubits数量。作为原理的证明,我们优化了用于H $ _2 $分子上的量子计算计算的自适应最小值集,其中指数和收缩系数取决于H-H距离,并将其应用于IBM-Q量子设备上H $ _2 $势能表面的生成。自适应最小值集达到了双Zeta基集的准确性,从而使一个人可以在量子设备上执行双Zeta质量计算,而无需在仿真中使用两倍的量子。这种方法可以直接将其扩展到其他分子系统和更大的基集。

Electronic structure calculations on small systems such as H$_2$, H$_2$O, LiH, and BeH$_2$ with chemical accuracy are still a challenge for the current generation of the noisy intermediate-scale quantum (NISQ) devices. One of the reasons is that due to the device limitations, only minimal basis sets are commonly applied in quantum chemical calculations, which allow one to keep the number of qubits employed in the calculations at minimum. However, the use of minimal basis sets leads to very large errors in the computed molecular energies as well as potential energy surface shapes. One way to increase the accuracy of electronic structure calculations is through the development of small basis sets better suited for quantum computing. In this work, we show that the use of adaptive basis sets, in which exponents and contraction coefficients depend on molecular structure, provide an easy way to dramatically improve the accuracy of quantum chemical calculations without the need to increase the basis set size and thus the number of qubits utilized in quantum circuits. As a proof of principle, we optimize an adaptive minimal basis set for quantum computing calculations on an H$_2$ molecule, in which exponents and contraction coefficients depend on the H-H distance, and apply it to the generation of H$_2$ potential energy surface on IBM-Q quantum devices. The adaptive minimal basis set reaches the accuracy of the double-zeta basis sets, thus allowing one to perform double-zeta quality calculations on quantum devices without the need to utilize twice as many qubits in simulations. This approach can be extended to other molecular systems and larger basis sets in a straightforward manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源