论文标题

多相星际介质中的浆液不稳

Plasmoid Instability in the Multiphase Interstellar Medium

论文作者

Fielding, Drummond B., Ripperda, Bart, Philippov, Alexander A.

论文摘要

控制复杂的团块结构,相分布和磁场几何形状的过程,这些几何形状在湍流的星际介质中跨越广泛的尺度发展。使用前所未有的高分辨率对热不稳定的湍流系统的三维磁流失动力模拟,我们表明在整个体积过程中会定期定期对浆液型介导的重新连接不稳定。浆液在三种不同的环境中形成:(i)在冷和温暖相的不对称界面和(iii)在温暖的体积填充阶段中的不对称界面中(ii)。然后,我们表明复杂的磁性热相结构的特征是主要是高度磁性的冷相,但是高磁曲率的区域(是重新连接的位点)跨越了温度的广泛范围。此外,我们表明热不稳定性改变了湍流磁场的尺度依赖性各向异性,从而减少了较小的尺度上涡流伸长的增加。最后,我们表明大多数质量都包含在一个连续的冷结构中,该结构被较小的团块包围,这些团块遵循尺度的自由质量分布。这些团块倾向于高度伸长,并且表现出与超音速湍流一致的大小与内部速度关系,以及与亚音速运动一致的相对团块距离尺度。我们讨论了冷等激素与观察到的微小原子和电离结构和HI纤维的惊人相似性,并考虑浆液的流行率将如何改变带电颗粒的运动,从而影响宇宙射线射线传输和ISM和其他类似系统中的热传导。

The processes controlling the complex clump structure, phase distribution, and magnetic field geometry that develops across a broad range of scales in the turbulent interstellar medium remains unclear. Using unprecedentedly high resolution three-dimensional magnetohydrodynamic simulations of thermally unstable turbulent systems, we show that large current sheets unstable to plasmoid-mediated reconnection form regularly throughout the volume. The plasmoids form in three distinct environments: (i) within cold clumps, (ii) at the asymmetric interface of the cold and warm phases, and (iii) within the warm, volume-filling phase. We then show that the complex magneto-thermal phase structure is characterized by a predominantly highly magnetized cold phase, but that regions of high magnetic curvature, which are the sites of reconnection, span a broad range in temperature. Furthermore, we show that thermal instabilities change the scale dependent anisotropy of the turbulent magnetic field, reducing the increase in eddy elongation at smaller scales. Finally, we show that most of the mass is contained in one contiguous cold structure surrounded by smaller clumps that follow a scale free mass distribution. These clumps tend to be highly elongated and exhibit a size versus internal velocity relation consistent with supersonic turbulence, and a relative clump distance-velocity scaling consistent with subsonic motion. We discuss the striking similarity of cold plasmoids to observed tiny scale atomic and ionized structures and HI fibers, and consider how the prevalence of plasmoids will modify the motion of charged particles thereby impacting cosmic ray transport and thermal conduction in the ISM and other similar systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源