论文标题

更好的ML工程的功能

Capabilities for Better ML Engineering

论文作者

Yang, Chenyang, Brower-Sinning, Rachel, Lewis, Grace A., Kästner, Christian, Wu, Tongshuang

论文摘要

尽管机器学习的迅速增长,但其工程支持仍以多种形式散布,并且倾向于偏爱某些工程阶段,利益相关者和评估偏好。我们设想了一个基于功能的框架,该框架为ML模型行为使用细粒度的规格,将现有的努力团结起来,以实现更好的ML工程。我们使用具体的方案(模型设计,调试和维护)来阐明能力在各种不同维度上的广泛应用,以及它们对构建更安全,更普遍和更值得信赖的模型的影响,反映了人类需求。通过初步实验,我们显示了能力反映模型推广性的潜力,这可以为ML工程过程提供指导。我们讨论了能力集成到ML工程中的挑战和机会。

In spite of machine learning's rapid growth, its engineering support is scattered in many forms, and tends to favor certain engineering stages, stakeholders, and evaluation preferences. We envision a capability-based framework, which uses fine-grained specifications for ML model behaviors to unite existing efforts towards better ML engineering. We use concrete scenarios (model design, debugging, and maintenance) to articulate capabilities' broad applications across various different dimensions, and their impact on building safer, more generalizable and more trustworthy models that reflect human needs. Through preliminary experiments, we show capabilities' potential for reflecting model generalizability, which can provide guidance for ML engineering process. We discuss challenges and opportunities for capabilities' integration into ML engineering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源