论文标题

物理受限的深度学习不可压缩的腔流

Physics-Constrained Deep Learning of Incompressible Cavity Flows

论文作者

McDevitt, Christopher J., Fowler, Eric, Roy, Subrata

论文摘要

不可压缩流的高分辨率模拟已成为一系列工程应用程序的常规模拟。尽管它们常规使用,但由于大多数实际应用的高维参数空间,对可用参数空间的全面探索通常是不切实际的。在这项工作中,我们演示了物理受限的深度学习方法的能力,提供了一种有效的方法来探索高分辨率计算流体动力学模拟的数据量最小的高维参数空间。作为特定应用,我们选择了二维盖驱动腔流的良好问题。在对正方形腔的经典案例进行广泛处理的同时,我们扩展了分析以治疗梯形的同步。在这样做时,确定解决方案的参数的数量不仅包括雷诺数的数字,还包括两个表征腔体几何形状的附加参数。因此,连同$ \左(x,y \右)$的流量变化和配置空间中的压力变化,这三个参数的存在导致解决方案在5D空间中有所不同。结果表明,在没有数据的情况下,物理受限的方法能够准确地描述此5D空间中的腔流量到雷诺数的中间值,但未能训练足够高的雷诺数。相比之下,使用少量流数据,单个神经网络能够为雷诺数字和空腔几何形状提供准确的描述。经过训练后,这种模型提供了一种快速的替代物,可用于有效探索5D空间。随后将此5D替代模型用于识别合并和分裂的关键参数值,因为Reynolds数字和空腔几何形状是不同的。

High resolution simulations of incompressible flows have become routine across a range of engineering applications. Despite their routine use, due to the high dimensional parameter space present for most practical applications, a comprehensive exploration of the available parameter space is often impractical. In this work, we demonstrate the ability of physics-constrained deep learning methods to provide an efficient means of exploring high-dimensional parameter spaces with minimal amounts of data from high resolution computational fluid dynamic simulations. As a specific application, we choose the well established problem of a 2D lid driven cavity flow. While giving an extensive treatment of the classic case of a square cavity, we extend the analysis to treat an isosceles trapezoid. In so doing, the number of parameters determining the solution includes not just the Reynolds number, but also two additional parameters characterizing the geometry of the cavity. Thus, together with the $\left( x, y \right)$ variation of the flow and pressure in configuration space, the presence of these three parameters results in the solution varying in a 5D space. It is shown that in the absence of data, physics-constrained methods are able to provide an accurate description of the cavity flow in this 5D space up to intermediate values of the Reynolds number, but fails to train for sufficiently high Reynolds numbers. In contrast, using a small quantity of flow data, a single neural network is able to provide an accurate description for a broad range of Reynolds numbers and cavity geometries. Once trained, such a model provides a rapid surrogate that can be used to efficiently explore the 5D space. This 5D surrogate model is subsequently used to identify critical parameter values for the merger and splitting of vortices as the Reynolds number and cavity geometry are varied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源