论文标题
意图感知的多源对比度对准标签增强建议
Intent-aware Multi-source Contrastive Alignment for Tag-enhanced Recommendation
论文作者
论文摘要
为了提供准确,多样化的建议服务,最近的方法使用辅助信息来促进用户和项目表示的学习过程。许多SOTA方法将不同的信息源(用户,项目,知识图,标签等)融合到图形,并使用图形神经网络通过消息传递范式介绍辅助信息。在这项工作中,我们寻求一个替代框架,该框架通过各种信息来源的自我监督学习,特别是对于常用的项目标签信息,可以轻松有效。我们使用自我划分的信号将用户与与他们之前与之交互的项目相关的辅助信息配对。为了实现配对,我们创建了代理培训任务。对于给定项目,该模型可以预测从与此项目交互的用户获得的表示形式和分配的标签之间的正确配对。该设计可直接使用辅助信息来提高用户和物品嵌入的质量,从而提供了有效的解决方案。推荐系统中的用户行为是由决策过程背后许多因素的复杂相互作用驱动的。为了使配对过程更加细粒度并避免嵌入崩溃,我们提出了一个意图感知的自我监督配对过程,在该过程中,我们将用户嵌入到多个子插入矢量中。每个子装饰向量通过使用特定标签群群的自我监督对齐来捕获特定的用户意图。我们将设计框架与各种推荐模型集成在一起,以证明其灵活性和兼容性。通过与七个现实世界数据集中的许多SOTA方法进行比较,我们表明我们的方法可以在需要更少的训练时间的同时获得更好的性能。这表明将我们的方法应用于网络尺度数据集的潜力。
To offer accurate and diverse recommendation services, recent methods use auxiliary information to foster the learning process of user and item representations. Many SOTA methods fuse different sources of information (user, item, knowledge graph, tags, etc.) into a graph and use Graph Neural Networks to introduce the auxiliary information through the message passing paradigm. In this work, we seek an alternative framework that is light and effective through self-supervised learning across different sources of information, particularly for the commonly accessible item tag information. We use a self-supervision signal to pair users with the auxiliary information associated with the items they have interacted with before. To achieve the pairing, we create a proxy training task. For a given item, the model predicts the correct pairing between the representations obtained from the users that have interacted with this item and the assigned tags. This design provides an efficient solution, using the auxiliary information directly to enhance the quality of user and item embeddings. User behavior in recommendation systems is driven by the complex interactions of many factors behind the decision-making processes. To make the pairing process more fine-grained and avoid embedding collapse, we propose an intent-aware self-supervised pairing process where we split the user embeddings into multiple sub-embedding vectors. Each sub-embedding vector captures a specific user intent via self-supervised alignment with a particular cluster of tags. We integrate our designed framework with various recommendation models, demonstrating its flexibility and compatibility. Through comparison with numerous SOTA methods on seven real-world datasets, we show that our method can achieve better performance while requiring less training time. This indicates the potential of applying our approach on web-scale datasets.