论文标题
利用提示:重复的第一价格拍卖中的自适应招标
Leveraging the Hints: Adaptive Bidding in Repeated First-Price Auctions
论文作者
论文摘要
随着电子商务的出现和综合化的增长,数字广告最近已取代了传统广告,成为经济中的主要营销力量。在过去的四年中,数字广告行业的一个特别重要的发展是从二价拍卖转向在线显示广告的第一价格拍卖。这一转变立即激发了如何在第一价格拍卖中竞标的智力挑战性问题,因为与第二价格拍卖不同,以真实的方式竞标人的私人价值不再是最佳选择。在该领域进行了一系列最近的作品之后,我们考虑了一个差异化的设置:我们对其他竞标者的最大竞标(即随着时间的推移可能是对抗性的)的任何假设,而是假设我们可以访问其他竞标者的最大竞标者的预测,其中通过某些BlackBox机器学习模型来了解其他竞标者的最大竞标。我们考虑两种类型的提示:一个可以进行单点预测,另一个可以在其中提示间隔(代表其他人最大出价下降的一种置信区域)。我们在情况下建立了最小值的最佳后悔界限,并在两种设置之间的定量行为上突出显示。当其他人的最大出价表现出稀疏性的进一步结构时,我们还提供了改善的遗憾界限。最后,我们通过使用实际招标数据进行演示来补充理论结果。
With the advent and increasing consolidation of e-commerce, digital advertising has very recently replaced traditional advertising as the main marketing force in the economy. In the past four years, a particularly important development in the digital advertising industry is the shift from second-price auctions to first-price auctions for online display ads. This shift immediately motivated the intellectually challenging question of how to bid in first-price auctions, because unlike in second-price auctions, bidding one's private value truthfully is no longer optimal. Following a series of recent works in this area, we consider a differentiated setup: we do not make any assumption about other bidders' maximum bid (i.e. it can be adversarial over time), and instead assume that we have access to a hint that serves as a prediction of other bidders' maximum bid, where the prediction is learned through some blackbox machine learning model. We consider two types of hints: one where a single point-prediction is available, and the other where a hint interval (representing a type of confidence region into which others' maximum bid falls) is available. We establish minimax optimal regret bounds for both cases and highlight the quantitatively different behavior between the two settings. We also provide improved regret bounds when the others' maximum bid exhibits the further structure of sparsity. Finally, we complement the theoretical results with demonstrations using real bidding data.