论文标题

GCONDNET:一种改善小型高维表格数据神经网络的新方法

GCondNet: A Novel Method for Improving Neural Networks on Small High-Dimensional Tabular Data

论文作者

Margeloiu, Andrei, Simidjievski, Nikola, Lio, Pietro, Jamnik, Mateja

论文摘要

神经网络通常在高维但小样本大小的表格数据集中挣扎。原因之一是当前的权重初始化方法假定权重之间的独立性,当样本不足以准确估算模型参数时,这可能是有问题的。在如此小的数据方案中,利用其他结构可以改善模型的性能和训练稳定性。为了解决这个问题,我们提出了GCONDNET,这是一种通过利用表格数据中存在的隐式结构来增强神经网络的一般方法。我们在每个数据维度的样本之间创建图形,并利用图形神经网络(GNN)提取此隐式结构,并调理基础预测器网络的第一层参数。通过创建许多小图,GCONDNET可利用数据的高维度,从而提高了基础预测器网络的性能。我们在12个现实世界数据集上演示了GCONDNET的有效性,在该数据集中,它表现优于14个标准和最新方法。结果表明,GCONDNET是一种多功能框架,用于将图形定制化为各种类型的神经网络,包括MLP和表格变压器。代码可在https://github.com/andreimargeloiu/gcondnet上找到。

Neural networks often struggle with high-dimensional but small sample-size tabular datasets. One reason is that current weight initialisation methods assume independence between weights, which can be problematic when there are insufficient samples to estimate the model's parameters accurately. In such small data scenarios, leveraging additional structures can improve the model's performance and training stability. To address this, we propose GCondNet, a general approach to enhance neural networks by leveraging implicit structures present in tabular data. We create a graph between samples for each data dimension, and utilise Graph Neural Networks (GNNs) to extract this implicit structure, and for conditioning the parameters of the first layer of an underlying predictor network. By creating many small graphs, GCondNet exploits the data's high-dimensionality, and thus improves the performance of an underlying predictor network. We demonstrate GCondNet's effectiveness on 12 real-world datasets, where it outperforms 14 standard and state-of-the-art methods. The results show that GCondNet is a versatile framework for injecting graph-regularisation into various types of neural networks, including MLPs and tabular Transformers. Code is available at https://github.com/andreimargeloiu/GCondNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源