论文标题

从数据中学到的格林功能的原则插值

Principled interpolation of Green's functions learned from data

论文作者

Praveen, Harshwardhan, Boulle, Nicolas, Earls, Christopher

论文摘要

我们提出了一种数据驱动的方法,用于通过学习相关的绿色功能来模拟其管理部分微分方程的物理系统。通过从高斯工艺提取的激发下收集输入输出对系统响应来观察到该主题系统。提出了两种学习绿色功能的方法。在第一种方法中,我们将系统的正交分解(POD)模式用作绿色函数特征向量的替代物,并随后使用数据拟合特征值。在第二个中,我们将随机奇异值分解(SVD)的概括为运算符,以构建对绿色函数的低级别近似值。然后,我们提出了一种歧管插值方案,用于在离线内线设置中使用,在线激发响应数据(以特定模型参数实例获取)被压缩到经验本本元中。随后将这些本征码用于歧管插值方案中,以在看不见的模型参数上发现其他合适的本征模。在一个和二维的几个示例中,证明了近似和插值数值技术。

We present a data-driven approach to mathematically model physical systems whose governing partial differential equations are unknown, by learning their associated Green's function. The subject systems are observed by collecting input-output pairs of system responses under excitations drawn from a Gaussian process. Two methods are proposed to learn the Green's function. In the first method, we use the proper orthogonal decomposition (POD) modes of the system as a surrogate for the eigenvectors of the Green's function, and subsequently fit the eigenvalues, using data. In the second, we employ a generalization of the randomized singular value decomposition (SVD) to operators, in order to construct a low-rank approximation to the Green's function. Then, we propose a manifold interpolation scheme, for use in an offline-online setting, where offline excitation-response data, taken at specific model parameter instances, are compressed into empirical eigenmodes. These eigenmodes are subsequently used within a manifold interpolation scheme, to uncover other suitable eigenmodes at unseen model parameters. The approximation and interpolation numerical techniques are demonstrated on several examples in one and two dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源