论文标题
依赖拓扑的聚结控制有限网络中的缩放指数
Topology-dependent coalescence controls scaling exponents in finite networks
论文作者
论文摘要
对不同数据方式的神经雪崩的多次研究导致了一个明显的假设,即大脑在临界点附近运行。观察到的指数通常表明平均田间定向 - 渗透普遍性类别,从而导致完全连接或随机的网络模型来研究雪崩动力学。但是,皮质网络具有不同的非随机特征和空间组织,这些特征会影响关键指数。在这里,我们表明,在具有不同拓扑的网络中出现了不同的经验指数,并取决于网络大小。特别是,我们发现明显的无尺度行为,均值场指数在结构化网络中以准临界动力的形式出现。这种准关键的动态不能轻易地与小型网络中的实际关键点区分开。我们发现活动动力学中的局部合并可以解释不同的指数。因此,在评估经验可观察的关键时,应考虑拓扑和系统大小。
Multiple studies of neural avalanches across different data modalities led to the prominent hypothesis that the brain operates near a critical point. The observed exponents often indicate the mean-field directed-percolation universality class, leading to the fully-connected or random network models to study the avalanche dynamics. However, the cortical networks have distinct non-random features and spatial organization that is known to affect the critical exponents. Here we show that distinct empirical exponents arise in networks with different topology and depend on the network size. In particular, we find apparent scale-free behavior with mean-field exponents appearing as quasi-critical dynamics in structured networks. This quasi-critical dynamics cannot be easily discriminated from an actual critical point in small networks. We find that the local coalescence in activity dynamics can explain the distinct exponents. Therefore, both topology and system size should be considered when assessing criticality from empirical observables.