论文标题

在Coadhexhoint Virasoro动作上

On the coadjoint Virasoro action

论文作者

Alekseev, Anton, Meinrenken, Eckhard

论文摘要

Virasoro代数的一组旋转轨道在第1级的旋转与某个开放子集$ \ widetilde {\ rm sl}(2,\ m athbb {r})_+$ {\ rm sl}(\ rm sl}(\ rm sl}(2,2,2,2,bbbbbb),我们将这种两者的培养物加强到准杂型族类固醇的莫里塔等效性,并将泊松结构整合在$ \ mathfrak {vir}^*_ \ mathsf {1}(s^1)$和cartan-dirac结构上,并在$ \ wideTilde {\ rm sl}(\ rm sl}(2,2,2,y)上cartan-dirac结构。

The set of coadjoint orbits of the Virasoro algebra at level 1 is in bijection with the set of conjugacy classes in a certain open subset $\widetilde{\rm SL}(2,\mathbb{R})_+$ of the universal cover of ${\rm SL}(2,\mathbb{R})$. We strengthen this bijection to a Morita equivalence of quasi-symplectic groupoids, integrating the Poisson structure on $\mathfrak{vir}^*_\mathsf{1}(S^1)$ and the Cartan-Dirac structure on $\widetilde{\rm SL}(2,\mathbb{R})_+$, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源