论文标题
预序序列二进制DQ tau中的增生过程,磁场和APSIDAL运动
Accretion process, magnetic fields, and apsidal motion in the pre-main sequence binary DQ Tau
论文作者
论文摘要
经典的T Tauri恒星(CTTSS)是年轻的恒星物体,它们会从其强度磁场影响的积聚盘中吸收材料。磁性压力在几个恒星半径处截断了圆盘,并迫使材料离开圆盘平面并沿着磁场线掉落到恒星表面上。但是,这种全局方案可能会因与积分成分相互作用的同伴的存在而受到干扰。这项工作旨在研究紧密偏心二进制DQ TAU的积聚和磁场,该dq tau由两个在不同轨道相处相互作用的相等质量($ \ sim $ 0.6 \ msun)组成。我们使用CFHT的esspadons进行了高分辨率光谱和光谱监测,研究了系统的变异性。我们提供了该系统有史以来的第一个磁场分析,Zeeman-Doppler Imaging揭示了次级的磁场比初级(分别为1.2 kg和0.5 kg),但是通过Zeeman强化分析的小规模场产生了相似的强度(约2.5 kg)。磁场拓扑和强度与CTTS上的积聚过程兼容。该系统的两个组成部分都在积聚,在轨道运动过程中会改变主积聚器。此外,该系统还显示出对Periastron和Apastron处的质量增生率的强烈提高。我们还首次在该系统中发现了轨道椭圆的APSidal运动。
Classical T Tauri stars (CTTSs) are young stellar objects that accrete materials from their accretion disc influenced by their strong magnetic field. The magnetic pressure truncates the disc at a few stellar radii and forces the material to leave the disc plane and fall onto the stellar surface by following the magnetic field lines. However, this global scheme may be disturbed by the presence of a companion interacting gravitationally with the accreting component. This work is aiming to study the accretion and the magnetic field of the tight eccentric binary DQ Tau, composed of two equal-mass ($\sim$ 0.6 \msun ) CTTSs interacting at different orbital phases. We investigated the variability of the system using a high-resolution spectroscopic and spectropolarimetric monitoring performed with ESPaDOnS at the CFHT. We provide the first ever magnetic field analysis of this system, the Zeeman-Doppler imaging revealed a stronger magnetic field for the secondary than the primary (1.2 kG and 0.5 kG, respectively), but the small-scale fields analysed through Zeeman intensification yielded similar strengths (about 2.5 kG). The magnetic field topology and strengths are compatible with the accretion processes on CTTSs. Both components of this system are accreting, with a change of the main accretor during the orbital motion. In addition, the system displays a strong enhancement of the mass accretion rate at periastron and apastron. We also discovered, for the first time in this system, the apsidal motion of the orbital ellipse.