论文标题
纳米级局部修饰PMMA折射率通过尖端增强的飞秒脉冲激光照射
Nanoscale local modification of PMMA refractive index by tip-enhanced femtosecond pulsed laser irradiation
论文作者
论文摘要
基于尖端增强的光学效应的调查技术能够将空间分辨率降至纳米水平,在过去的二十年中使广泛的重要发现具有广泛的调色板。最近,它们的基本光学设置开始成为通过纳米级空间分辨率修改和操纵物质的有用工具。我们试图通过报告一种方法来促进这些努力,从而发现我们可行的方法可以改变丙烯酸聚合物材料(PMMA)(PMMA)的表面折射率。折射率的变化是通过将飞秒脉冲的近红外激光束集中在金属化纳米大小尖端的顶端上,传统上用于扫描探针显微镜(SPM)应用。所采用的照明策略产生了在PMMA样品表面发生的折射率的圆形修饰,与当前的最新ART相比,横向尺寸<200 nm <200 nm,低于790 nm的照明,精确度增加了四倍。在尖端顶点处发生的光强度增强效应使得在低激光脉冲能量(<0.5 NJ)处实现折射率变化,这代表了与当前最新技术相比的两个幅度优势。提出的纳米印刷方法非常灵活,因为它可以用不同的功率水平使用,并且有可能与其他材料一起操作。除了启用具有高横向分辨率的折射率修改外,此方法还可以为其他重要应用铺平道路,例如制造光子晶体晶格或表面波导。
Investigation techniques based on tip-enhanced optical effects, capable to yield spatial resolutions down to nanometers level, have enabled a wide palette of important discoveries over the past twenty years. Recently, their underlying optical setups are beginning to emerge as useful tools to modify and manipulate matter with nanoscale spatial resolution. We try to contribute to these efforts by reporting a method that we found viable to modify the surface refractive index of polymethyl methacrylate (PMMA), an acrylic polymer material. The changes in the refractive index are accomplished by focusing a femtosecond pulsed near-infrared laser beam on the apex of a metalized nano-sized tip, traditionally used in scanning probe microscopy (SPM) applications. The adopted illumination strategy yields circular-shaped modifications of the refractive index occurring at the surface of the PMMA sample, exhibiting a lateral size <200 nm, under 790 nm illumination, representing a four-fold increase in precision compared to the current state-of-the-art. The light intensity enhancement effects taking place at the tip apex makes possible achieving refractive index changes at low laser pulse energies (<0.5 nJ), which represents two orders of magnitude advantage over the current state-of-the art. The presented nanoimprinting method is very flexible, as it can be used with different power levels and can potentially be operated with other materials. Besides enabling modifications of the refractive index with high lateral resolution, this method can pave the way towards other important applications such the fabrication of photonic crystal lattices or surface waveguides.