论文标题
Sundew:针对病例敏感的恶意软件的预测指标合奏
SUNDEW: An Ensemble of Predictors for Case-Sensitive Detection of Malware
论文作者
论文摘要
恶意软件计划是多种多样的,目标,功能和威胁水平各不相同,从仅仅弹出式损失到财务损失。因此,它们在整个系统中的运行时足迹有所不同,从而影响了最佳数据源(网络,操作系统(OS),硬件)和对恶意软件检测有用的功能。此外,恶意软件类别的威胁水平的变化会影响用户检测的要求。因此,对于每个恶意软件类别,<data-source,功能,用户报价>的最佳元组都不同,从而影响了不可知论的最新检测解决方案,这些解决方案对这些微妙的差异。 本文介绍了Sundew,这是一个框架,该框架使用其最佳元素<Data-Source,功能,用户报价>来检测恶意软件类。 Sundew使用专用预测指标的合奏,每个集合都经过特定的数据源(网络,OS和硬件)训练,并根据特定类的功能和要求调整。尽管具有整体观点的专业合奏可以改善检测,但从不同的预测指标中汇总了独立冲突的推论是具有挑战性的。考虑到威胁级别,数据源中的噪声和先前的域知识,Sundew通过分层聚合解决了这种冲突。我们在8个课程中的10,000多个恶意软件样本的现实数据集上评估了Sundew。在大多数班级中,它达到了F1得分,平均为0.93,有限的性能开销为1.5%。
Malware programs are diverse, with varying objectives, functionalities, and threat levels ranging from mere pop-ups to financial losses. Consequently, their run-time footprints across the system differ, impacting the optimal data source (Network, Operating system (OS), Hardware) and features that are instrumental to malware detection. Further, the variations in threat levels of malware classes affect the user requirements for detection. Thus, the optimal tuple of <data-source, features, user-requirements> is different for each malware class, impacting the state-of-the-art detection solutions that are agnostic to these subtle differences. This paper presents SUNDEW, a framework to detect malware classes using their optimal tuple of <data-source, features, user-requirements>. SUNDEW uses an ensemble of specialized predictors, each trained with a particular data source (network, OS, and hardware) and tuned for features and requirements of a specific class. While the specialized ensemble with a holistic view across the system improves detection, aggregating the independent conflicting inferences from the different predictors is challenging. SUNDEW resolves such conflicts with a hierarchical aggregation considering the threat-level, noise in the data sources, and prior domain knowledge. We evaluate SUNDEW on a real-world dataset of over 10,000 malware samples from 8 classes. It achieves an F1-Score of one for most classes, with an average of 0.93 and a limited performance overhead of 1.5%.