论文标题
在$ \ sqrt {\ textit s} = 13.6 $ tev中,使用带电的粒子扁平化揭示了pp碰撞中多个软党互动的影响
Unveiling the effects of multiple soft partonic interactions in pp collisions at $\sqrt{\textit s}=13.6$ TeV using charged-particle flattenicity
论文作者
论文摘要
基于带电粒子多重性的事件分类器或事件形状已被LHC的爱丽丝协作(Alice Collaporation)广泛用于Proton-Proton(PP)碰撞。自从观察到高质量PP碰撞中的流体样行为以来,这些工具的使用变得非常有用。特别是,该研究是向前V0 Alice检测器注册的带电粒子多重性的函数,可以在高质量PP碰撞中发现陌生性增强。但是,基于多样性的事件分类器的一个缺点是,需要高电荷粒子多样性将样本偏向于多射流最终状态等硬过程。这些偏见使得在高多重PP碰撞中进行喷气量化搜索变得困难。在这种情况下,本文探讨了新事件分类器扁平率的使用;它使用在正向假性区域中计算的多重性。为了说明该工具的工作原理,探索了$ \ sqrt {s} = 13.6 $ tev用pythia〜8模拟的pp碰撞。讨论了夸张对多方相互作用的敏感性以及对碰撞的``硬度''的敏感性。提出了毕曲霉8的横向动量光谱的预测,并提出了浅味的黑龙的横向动量光谱。
Event classifiers based either on the charged-particle multiplicity or the event shape have been extensively used in proton-proton (pp) collisions by the ALICE collaboration at the LHC. The use of these tools became very instrumental since the observation of fluid-like behavior in high-multiplicity pp collisions. In particular, the study as a function of the charged-particle multiplicity registered in the forward V0 ALICE detector allowed for the discovery of strangeness enhancement in high-multiplicity pp collisions. However, one drawback of the multiplicity-based event classifiers is that requiring a high charged-particle multiplicity biases the sample towards hard processes like multi-jet final states. These biases make it difficult to perform jet-quenching searches in high-multiplicity pp collisions. In this context, the present paper explores the use of the new event classifier, flattenicity; which uses the multiplicity calculated in the forward pseudorapidity region. To illustrate how this tool works, pp collisions at $\sqrt{s}=13.6$ TeV simulated with PYTHIA~8 are explored. The sensitivity of flattencity to multi-partonic interactions as well as to the ``hardness'' of the collision are discussed. PYTHIA 8 predictions for the transverse momentum spectra of light- and heavy-flavored hadrons as a function of flattenicity are presented.