论文标题
标量调节理论中球形对称和静态配置的外部解决方案的数值方法
Numerical Approach to the Exterior Solution of Spherically Symmetric and Static Configuration in Scalar-Tensor Theories
论文作者
论文摘要
我们通过使用具有零电位的非微耦合标量字段作为我们的样本模型来检查标量调整理论中球形对称和静态配置的外部解。我们在这项工作中的主要目的是通过寻求近似分析表达式来符合感兴趣区域中的数值解决方案的结果,而分析表达式却微弱地依赖于模型的参数,例如当前情况下的非微耦合常数。为此,我们根据标量场及其表面值确定质量和度量函数的主要形式。然后,我们为标量场提供一个函数,该函数仅包含构型和构型的半径以及标量场的表面和渐近值。因此,我们表明,外部解决方案可以以形式表示,该形式不取决于所选模型的参数,直到$ 10^{ - 5} $的准确性顺序。
We numerically examine the exterior solution of spherically symmetric and static configuration in scalar-tensor theories by using the nonminimally coupled scalar field with zero potential as our sample model. Our main purpose in this work is to fit the resulting data of the numerical solutions in the interested region by seeking for approximate analytical expressions which are weakly dependent of the parameters of a model, such as the nonminimal coupling constant in the present case. To this end, we determine the main forms of the mass and the metric functions in terms of the scalar field and their surface values. Then, we provide a function for the scalar field that contains only the mass and the radius of the configuration together with the surface and the asymptotic values of the scalar field. Therefore, we show that the exterior solution can be expressed in a form which does not depend on the parameters of a chosen model up to an order of accuracy around $10^{-5}$.