论文标题

$ 3 $ - 发育的椭圆曲线的Selmer组$ y^2 = x^3+n^2 $

The $3$-isogeny Selmer groups of the elliptic curves $y^2=x^3+n^2$

论文作者

Chan, Stephanie

论文摘要

考虑椭圆曲线的家族$ e_n:y^2 = x^3+n^2 $,其中$ n $在阳性cubefree整数中变化。从$ e_n $到$ \ hat {e} _n:y^2 = x^3-27n^2 $,有一个合理的$ 3 $ - 发育$ ϕ $,以及双重差异$ \ hat ϕ:\ hat {e} _n \ hat {e} _n \ rightarrow e_n $。我们表明,几乎所有$ n $,$ \ mathrm {sel} _ϕ(e_n)$的排名是$ 0 $,$ \ mathrm {sel} _ {\ hat \ tartical}(\ hat \ hat {e} _n)$的等级是由$ n $ ye ye ye y ye y y ye y y ye y y y ye BMM的数量确定9 $。

Consider the family of elliptic curves $E_n:y^2=x^3+n^2$, where $n$ varies over positive cubefree integers. There is a rational $3$-isogeny $ϕ$ from $E_n$ to $\hat{E}_n:y^2=x^3-27n^2$ and a dual isogeny $\hatϕ:\hat{E}_n\rightarrow E_n$. We show that for almost all $n$, the rank of $\mathrm{Sel}_ϕ(E_n)$ is $0$, and the rank of $\mathrm{Sel}_{\hatϕ}(\hat{E}_n)$ is determined by the number of prime factors of $n$ that are congruent to $2\bmod 3$ and the congruence class of $n\bmod 9$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源