论文标题

实用非平稳无线通道的联合时空预编码

Joint Spatio-Temporal Precoding for Practical Non-Stationary Wireless Channels

论文作者

Zou, Zhibin, Careem, Maqsood, Dutta, Aveek, Thawdar, Ngwe

论文摘要

现代无线系统中明显的高移动性,密度和多路径使该通道高度非平稳。这会导致通道分布的时间变化,从而导致在多个自由度(例如,用户,天线,频率和符号)之间存在时间变化的关节干扰,这在实践中导致常规的预制次数。在这项工作中,我们得出了Mercer定理(HOGMT)的高阶概括,将多用户的非平稳通道分解为两个(双)联合正交亚渠道(特征函数)的两个(双重)集,当一组通过通道传输时,这会导致另一组组合。本本征的双重性和联合正交性可确保对独立扁平的亚渠道的传播。因此,以最佳衍生系数传输这些本征函数最终会减轻其自由程度上的任何干扰,并构成了拟议的关节时空预言的基础。转移的双重特征和系数在解调后直接重建接收器的数据符号,从而通过减轻对任何补充后编码的需求,从而大大减轻其计算负担。此外,从时频延迟多普勒通道内核分解的本征函数对于提取二阶通道统计量至关重要,因此完全表征了基础通道。我们使用内置的MATLAB内置的现实非平稳渠道框架对此进行了评估,并表明我们的预编码实现了$ {\ geqslant} $ 4 $ 4减少snr $ {\ geqslant} 15 $ db的ber ber in Ber in ofdm Systems in ofdm ofdm Proimention and Complactity and Compppediality and-of Teal-Art-Art的精确性相比。

The high mobility, density and multi-path evident in modern wireless systems makes the channel highly non-stationary. This causes temporal variation in the channel distribution that leads to the existence of time-varying joint interference across multiple degrees of freedom (DoF, e.g., users, antennas, frequency and symbols), which renders conventional precoding sub-optimal in practice. In this work, we derive a High-Order Generalization of Mercer's Theorem (HOGMT), which decomposes the multi-user non-stationary channel into two (dual) sets of jointly orthogonal subchannels (eigenfunctions), that result in the other set when one set is transmitted through the channel. This duality and joint orthogonality of eigenfuntions ensure transmission over independently flat-fading subchannels. Consequently, transmitting these eigenfunctions with optimally derived coefficients eventually mitigates any interference across its degrees of freedoms and forms the foundation of the proposed joint spatio-temporal precoding. The transferred dual eigenfuntions and coefficients directly reconstruct the data symbols at the receiver upon demodulation, thereby significantly reducing its computational burden, by alleviating the need for any complementary post-coding. Additionally, the eigenfunctions decomposed from the time-frequency delay-Doppler channel kernel are paramount to extracting the second-order channel statistics, and therefore completely characterize the underlying channel. We evaluate this using a realistic non-stationary channel framework built in Matlab and show that our precoding achieves ${\geqslant}$4 orders of reduction in BER at SNR${\geqslant}15$dB in OFDM systems for higher-order modulations and less complexity compared to the state-of-the-art precoding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源