论文标题
星空星际活动研究立方体(SPARCS):确定行星宜居性的输入
The Star-Planet Activity Research CubeSat (SPARCS): Determining Inputs to Planetary Habitability
论文作者
论文摘要
我们的星系宿主中至少一个小星球(Hz)中的一个小星球(Hz)中的750亿个低质量恒星。行星接收到的恒星紫外线(UV)辐射强大且变化很大,并且对大气丧失,组成和宜居性有影响。 SPARCS是由NASA资助的任务,是通过观察10至20个低质量恒星的静态和紫外紫外线的发射,同时在两个紫外线中:153-171 nm和260-300 nm。 Sparcs太阳同步终端轨道允许长时间进行不间断的观测,达到某些目标的10天。有效载荷由10厘米级望远镜,二分元素,紫外探测器和相关电子设备,热控制系统和板载处理器组成。有效载荷托管在蓝色峡谷技术6U立方体上。 SPARCS主持了一些对其他任务具有广泛适用性的技术创新。有效载荷证明了在太空中使用“ 2D掺杂”(即三角洲和超晶格)探测器和检测器集成的金属介电滤波器。该检测器技术的量子效率比NASA的Galex探测器高约5倍。此外,SPARCS的有效负载处理器提供动态的暴露控制,自动调整曝光时间以避免爆发饱和度并为时间溶解最强的恒星耀斑。一个简单的被动冷却系统将检测器温度保持在238K以下,以最大程度地减少深色电流。航天器巴士提供的指向抖动小于6英寸,从而最大程度地减少了平面误差,暗流和读书的影响。所有这些元素都可以在立方体平台内实现竞争性的天体物理学科学。 SPARCS目前处于最终设计和制造阶段(在NASA上下文中C阶段)。它将于2024年推出一年的初级科学任务。
Seventy-five billion low-mass stars in our galaxy host at least one small planet in their habitable zone (HZ). The stellar ultraviolet (UV) radiation received by the planets is strong and highly variable, and has consequences for atmospheric loss, composition, and habitability. SPARCS is a NASA-funded mission to characterize the quiescent and flare UV emission from low-mass stars, by observing 10 to 20 low-mass stars, over timescales of days, simultaneously in two UV bands: 153-171 nm and 260-300 nm. SPARCS Sun-synchronous terminator orbit allows for long periods of uninterrupted observations, reaching 10s of days for some targets. The payload consists of a 10 cm-class telescope, a dichroic element, UV detectors and associated electronics, a thermal control system, and an on-board processor. The payload is hosted on a Blue Canyon Technologies 6U CubeSat. SPARCS hosts several technology innovations that have broad applicability to other missions. The payload demonstrates the use of "2D-doped" (i.e., delta- and superlattice-doped) detectors and detector-integrated metal dielectric filters in space. This detector technology provides ~5x larger quantum efficiency than NASA's GALEX detectors. In addition, SPARCS' payload processor provides dynamic exposure control, automatically adjusting the exposure time to avoid flare saturation and to time-resolve the strongest stellar flares. A simple passive cooling system maintains the detector temperature under 238K to minimize dark current. The spacecraft bus provides pointing jitter smaller than 6", minimizing the impact of flat-field errors, dark current, and read-noise. All these elements enable competitive astrophysics science within a CubeSat platform. SPARCS is currently in the final design and fabrication phase (Phase C in the NASA context). It will be launched in 2024, for a primary science mission of one year.